

Chapter 4: Network Access

Introduction to Networks

© 2008 Cisco Systems, Inc. All rights reserved.

Chapter 4: Objectives

Upon completion of this chapter, you will be able to:

- Identify device connectivity options.
- Describe the purpose and functions of the physical layer in the network.
- Describe basic principles of the physical layer standards.
- Identify the basic characteristics of copper cabling.
- Build a UTP cable used in Ethernet networks.
- Describe fiber-optic cabling and its main advantages over other media.
- Describe wireless media.
- Select the appropriate media for a given requirement and connect devices.

.1 1.1 1.

Chapter 4: Objectives (cont.)

Upon completion of this chapter, you will be able to:

- Describe the purpose and function of the data link layer in preparing communication for transmission on specific media.
- Describe the Layer 2 frame structure and identify generic fields.
- Identify several sources for the protocols and standards used by the data link layer.
- Compare the functions of logical topologies and physical topologies.
- Describe the basic characteristics of media control methods on WAN topologies.
- Describe the basic characteristics of media control methods on LAN topologies.
- Describe the characteristics and functions of the data link frame.

.1 1.1 1.

4.4 Media Access Control

© 2008 Cisco Systems, Inc. All rights reserved

Chapter 4

- 4.1 Physical Layer Protocols
- 4.2 Network Media
- 4.3 Data Link Layer Protocols
- 4.4 Media Access Control
- 4.5 Summary

4.1 Physical Layer Protocols

© 2008 Cisco Systems, Inc. All rights reserved.

Getting it Connected Connecting to the Network

Getting it Connected Connecting to the Network (cont.)

Getting it Connected Network Interface Cards

Connecting to the Wireless LAN with a Range Extender

Purpose of the Physical Layer The Physical Layer

Purpose of the Physical Layer Physical Layer Media

0

Digital Signal

AM~

FM

PM

0

Electrical Signals -Copper cable

Light Pulse -Fiber-optic cable

cisco.

VVV

Purpose of the Physical Layer Physical Layer Standards

Standard Organization	Networking Standards
ISO	 ISO 8877: Officially adopted the RJ connectors (e.g., RJ-11, RJ-45) ISO 11801: Network cabling standard similar to EIA/TIA 568.
EIA/TIA	 TIA-568-C: Telecommunications cabling standards, used by nearly all voice, video and data networks. TIA-569-B: Commercial Building Standards for Telecommunications Pathways and Spaces TIA-598-C: Fiber optic color coding TIA-942: Telecommunications Infrastructure Standard for Data Centers
ANSI	568-C: RJ-45 pinouts. Co-developed with EIA/TIA
ITU-T	• G.992: ADSL
IEEE	 802.3: Ethernet 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth

Fundamental Principles of Layer 1 Physical Layer Fundamental Principles

Media	Physical Components	Frame Encoding Technique	Signalling Method
Copper Cable	 UTP Coaxial Connectors NICs Ports Interfaces 	 Manchester Encoding Non-Return to Zero (NRZ) techniques 4B/5B codes are used with Multi-Level Transition Level 3 (MLT-3) signaling 8B/10B PAM5 	 Changes in the electromagnetic field Intensity of the electromagnetic field Phase of the electromagnetic wave
Fiber Optic Cable	 Single-mode Fiber Multimode Fiber Connectors NICs Interfaces Lasers and LEDs Photoreceptors 	 Pulses of light Wavelength multiplexing using different colors 	A pulse equals 1.No pulse is 0.
Wireless Media	Access PointsNICsRadioAntennae	 DSSS (direct-sequence spread-spectrum) OFDM (orthogonal frequency division multiplexing) 	 Radio waves

Fundamental Principles of Layer 1 Bandwidth

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10^9 bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10^12 bps

Fundamental Principles of Layer 1 Throughput

Fundamental Principles of Layer 1 Types of Physical Media

4.2 Network Media

Copper Cabling Characteristics of Copper Media

Copper Cabling Copper Media

Copper Cabling UTP Cable

Copper Cabling STP Cable

Copper Cabling Coaxial Cable

Copper Cabling Cooper Media Safety

The separation of data and electrical power cabling must comply with safety codes.

Cables must be connected correctly.

Installations must be inspected for damage.

Equipment must be grounded correctly.

UTP Cabling **Properties of UTP Cabling**

UTP cable does not use shielding to counter the effects of EMI and RFI. Instead, cable designers have discovered that they can limit the negative effect of crosstalk by:

- Cancellation
- Varying the number of twists per wire pair

UTP Cabling UTP Cabling Standards

UTP Cabling UTP Connectors

RJ-45 UTP Plugs

RJ-45 UTP Socket

UTP Cabling Types of UTP Cable

T568B

Cable Type	Standard	Application
Ethernet Straight- through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	 Connects two network hosts Connects two network intermediary devices (switch to switch, or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter.

UTP Cabling Testing UTP Cables

After installation, a UTP cable tester should be used to test for the following parameters:

- Wire map
- Cable length
- Signal loss due to attenuation
- Crosstalk

Fiber Optic Cabling Properties of Fiber Optic Cabling

Fiber-optic cabling is now being used in four types of industry:

- Enterprise Networks
- Fiber-to-the-home (FTTH) and Access Networks
- Long-Haul Networks
- Submarine Networks

Fiber Optic Cabling **Fiber Media Cable Design**

Fiber Optic Cabling Types of Fiber Media

Single Mode

- · Larger core than single mode cable
- · Allows greater dispersion and therefore, loss of signal
- Suited for long distance applications, but shorter than single mode
- Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

Fiber Optic Cabling Network Fiber Connectors

ST Connectors

SC Connectors

LC Connector

cisco.

Fiber Optic Cabling Testing Fiber Cables

Optical Time Domain Reflectometer (OTDR)

Fiber Optic Cabling **Fiber versus Copper**

Implementation Issues	Copper Media	Fibre Optic
Bandwidth Supported	10 Mbps – 10 Gbps	10 Mbps – 100 Gbps
Distance	Relatively short (1 – 100 meters)	Relatively High (1 – 100,000 meters)
Immunity To EMI And RFI	Low	High (Completely immune)
Immunity To Electrical Hazards	Low	High (Completely immune)
Media And Connector Costs	Lowest	Highest
Installation Skills Required	Lowest	Highest
Safety Precautions	Lowest	Highest

cisco.

Wireless Media Properties of Wireless Media

Wireless does have some areas of concern including:

- Coverage area
- Interference
- Security

Wireless Media Types of Wireless Media

	 IEEE 802.11 standards Commonly referred to as Wi-Fi. Uses CSMA/CA Variations include: 802.11a: 54 Mbps, 5 GHz 802.11b: 11 Mbps, 2.4 GHz 802.11g: 54 Mbps, 2.4 GHz 802.11g: 54 Mbps, 2.4 and 5 GHz 802.11n: 600 Mbps, 2.4 and 5 GHz 802.11ac: 1 Gbps, 5 GHz 802.11ad: 7 Gbps, 2.4 GHz, 5 GHz, and 60 GHz
Bluetooth °	 IEEE 802.15 standard Supports speeds up to 3 Mb/s Provides device pairing over distances from 1 to 100 meters.
MAX	 IEEE 802.16 standard Provides speeds up to 1 Gbps Uses a point-to-multipoint topology to provide wireless broadband access.

Wireless Media Wireless LAN

Cisco Linksys EA6500 802.11ac Wireless Router

Wireless Media 802.11 Wi-Fi Standards

Standard	Maximum Speed	Frequency	Backwards Compatible
802.11a	54 Mbps	5 GHz	No
802.11b	11 Mbps	2.4 GHz	No
802.11g	54 Mbps	2.4 GHz	802.11b
802.11n	600 Mbps	2.4 GHz or 5 GHz	802.11b/g
802.11ac	1.3 Gbps (1300 Mbps)	2.4 GHz and 5.5 GHz	802.11b/g/n
802.11ad	7 Gbps (7000 Mbps)	2.4 GHz, 5 GHz and 60 GHz	802.11b/g/n/ac

4.3 Data Link Layer Protocols

© 2008 Cisco Systems, Inc. All rights reserved

Purpose of the Data Link Layer The Data Link Layer

Purpose of the Data Link Layer **Data Link Sublayers**

Network				
Doto Link	LLC Sublayer			
Data Link	MAC Sublayer	2.3 ernet	11 11	. 15 tooth
Physical		805 Ethe	802 Wi	802 Blue

Purpose of the Data Link Layer Media Access Control

The Data Link Layer

Purpose of the Data Link Layer **Providing Access to Media**

Data Link Layer Formatting Data for Transmission

Layer 2 Frame Structure Creating a Frame

		HEADE	R		Packet (Data)	TRAILE	ER	
Fran Sta	me art	Addressing	Туре	Control	DATA	Error Detection	Frame Sto	ą

Layer 2 Standards Data Link Layer Standards

Standard organization	Networking Standards
IEEE	 802.2: Logical Link Control (LLC) 802.3: Ethernet 802.4: Token bus 802.5: Token passing 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 802.16: WiMax
ITU-T	 G.992: ADSL G.8100 - G.8199: MPLS over Transport aspects Q.921: ISDN Q.922: Frame Relay
ISO	 HDLC (High Level Data Link Control) ISO 9314: FDDI Media Access Control (MAC)
ANSI	X3T9.5 and X3T12: Fiber Distributed Data Interface (FDDI)

Topologies Controlling Access to the Media

Sharing the Media

Topologies Physical and Logical Topologies

Physical Topology

Topologies Physical and Logical Topologies (cont.)

Logical Topology

WAN Topologies Common Physical WAN Topologies

Point-to-point topology

Full mesh topology

WAN Topologies Physical Point-to-Point Topology

WAN Topologies Logical Point-to-Point Topology

WAN Topologies Half- and Full-Duplex

Half-Duplex

Full-Duplex

LAN Topologies Physical LAN Topologies

Physical Topologies

Bus topology

Ring topology

LAN Topologies Logical Topology for Shared Media

LAN Topologies Contention-Based Access

Characteristics	Contention-Based Technologies
 Stations can transmit at any time Collision exist There are mechanisms to resolve contention for the media 	 CSMA/CD for 802.3 Ethernet networks CSMA/CA for 802.11 wireless networks

LAN Topologies Multi-Access Topology

Logical Multi-Access Topology

LAN Topologies Controlled Access

Characteristics	Controlled Access Technologies
 Only one station can transmit at a time Devices wanting to transmit must wait their turn No collisions May use a token passing method 	Token Ring (IEEE 802.5)FDDI

LAN Topologies Ring Topology

Data Link Frame The Frame

In a fragile environment, more controls are needed to ensure delivery. The header and trailer fields are larger as more control information is needed.

In a protected environment, we can count on the frame arriving at its destination. Fewer controls are needed, resulting in smaller fields and smaller frames. Less effort needed to ensure delivery = lower overhead = faster transmission rates

Data Link Frame The Header

Header					
Start Frame	Address	Type/ Length	Data	FCS	STOP FRAME

Data Link Frame Layer 2 Address

Logical Multi-Access Topology

A point-to-point frame has only 1 possible destination.

Data Link Frame The Trailer

START FRAME	ADDRESS	TYPE/ LENGTH	Data	Trailer	
				FCS	Stop Frame

Frame Check Sequence

This field is used for error checking. The source calculates a number based on the frame's data and places that number in the FCS field. The destination then recalculates the data to see if the FCS matches. If they don't match, the destination deletes the frame.

Stop Frame

This field, also called the Frame Trailer, is an optional field that is used when the length of the frame is not specified in the Type/Length field. It indicates the end of the frame when transmitted.

Data Link Frame LAN and WAN Frames

Examples of Layer 2 Protocols

Data Link Frame Ethernet Frame

Ethernet Protocol

A Common Data Link Layer Protocol for LANs

	Frame						
Field name	Preamble	Destination	Source	Туре	Data	Frame Check Sequence	
Size	8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes	

Preamble - Used for synchronization; also contains a delimiter to mark the end of the timing information

Destination Address - 48-bit MAC address for the destination node

Source Address - 48-bit MAC address for the source node

Type - Value to indicate which upper layer protocol will receive the data after the Ethernet process is complete

Data or payload - This is the PDU, typically an IPv4 packet, that is to be transported over the media.

Frame Check Sequence (FCS) - A value used to check for damaged frames

Data Link Frame Point-to-Point Protocol Frame

Point-to-Point Protocol

A Common Data Link Protocol for WANs

	Frame					
Field name	Flag	Address	Control	Protocol	Data	FCS
Size	1 byte	1 byte	1 byte	2 bytes	variable	2 or 4 bytes

Flag - A single byte that indicates the beginning or end of a frame. The flag field consists of the binary sequence 01111110.

Address - A single byte that contains the standard PPP broadcast address. PPP does not assign individual station addresses.

Control - A single byte that contains the binary sequence 00000011, which calls for transmission of user data in an unsequenced frame.

Protocol - Two bytes that identify the protocol encapsulated in the data field of the frame. The most up-to-date values of the protocol field are specified in the most recent Assigned Numbers Request For Comments (RFC).

Data - Zero or more bytes that contain the datagram for the protocol specified in the protocol field.

Frame Check Sequence (FCS) - Normally 16 bits (2 bytes). By prior agreement, consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

Data Link Frame 802.11 Wireless Frame

Network Access Summary

- The TCP/IP network access layer is the equivalent of the OSI data link layer (Layer 2) and the physical layer (Layer 1).
- The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.
- The physical layer standards address three functional areas: physical components, frame encoding technique, and signaling method.
- Using the proper media is an important part of network communications. Without the proper physical connection, either wired or wireless, communications between any two devices will not occur.
- Wired communication consists of copper media and fiber cable.
- There are three main types of copper media used in networking: unshielded-twisted pair (UTP), shielded-twisted pair (STP), and coaxial cable. UTP cabling is the most common copper networking media.

Network Access Summary (cont.)

- Optical fiber cable has become very popular for interconnecting infrastructure network devices. It permits the transmission of data over longer distances and at higher bandwidths (data rates) than any other networking media.
- Wireless media carry electromagnetic signals that represent the binary digits of data communications using radio or microwave frequencies.
- The data link layer is responsible for the exchange of frames between nodes over a physical network media. It allows the upper layers to access the media and controls how data is placed and received on the media.
- Among the different implementations of the data link layer protocols, there
 are different methods of controlling access to the media. These media
 access control techniques define if and how the nodes share the media.
- The actual media access control method used depends on the topology and media sharing. LAN and WAN topologies can be physical or logical.

cisco.

Network Access Summary (cont.)

- WANs are commonly interconnected using the point-to-point, hub and spoke, or mesh physical topologies.
- In shared media LANs, end devices can be interconnected using the star, bus, ring, or extended star (hybrid) physical topologies.
- All data link layer protocols encapsulate the Layer 3 PDU within the data field of the frame. However, the structure of the frame and the fields contained in the header and trailer vary according to the protocol.

Cisco | Networking Academy® Mind Wide Open®