··|···|·· cisco

Chapter 5: Network Security and Monitoring

Connecting Networks

© 2008 Cisco Systems, Inc. All rights reserved

Chapter 5

- 5.1 LAN Security
- 5.2 Syslog and NTP
- 5.3 SNMP
- 5.4 NetFlow
- 5.5 Cisco Switch Port Analyzer (SPAN)

5.1 LAN Security

© 2008 Cisco Systems, Inc. All rights reserved.

L2 Security

- CDP Reconnaissance Attacks
- Telnet Attacks
- MAC Address Table Flooding Attacks
- VLAN Attacks
- DHCP Attacks
- L2 Device Access Control

CDP Reconnaissance Attacks

- CDP automatically discover other CDP-enabled devices.
- CDP data: IP address, IOS version, platform, capabilities.
- CDP uses unencrypted broadcast communication.

	Capture Analyze Statistics	Help			كالكات
		0.444334			
			mal mal 1 ~	440 80 0 W M	
jiter:		• 0	pression gear	Booky	_
Time	Source	Destination	Protocol -	Info	
81 90.674671	192.168.1.10	192.168.1.255	NBNS	Registration NB KTHORNTO-WKP<1f>	_
82 90.808504	C15C0_90:93:03	192 168 1 255	NRNS	Device ID: NL Fort ID: FastEthernet0/3	
84 92.013391	C1sco_9e:93:03	C1sco_9e:93:03	LOOP	Reply	
85 92.173902	192.168.1.10	192.168.1.255	NBNS	Registration NB KTHORNTO-WXP<1f>	
			11		3
H Checksum: 0 H Device ID:	conds xd139 [incorrect, s H1	hould be 0xd237]			
Type: Software Ve Type: SoftLength: 1 Software	tware version (0x00 88 Version: Cisco IOS Copyright Compiled S	05) Software, C2960 Softwa (c) 1986-2008 by Cisco at 05-Jan-08 00:42 by 1	re (C2960-L) Systems, In welliu	WBASEK9-M), Version 12.2(44)5E, RELEASE SOFTWARE (FC	1)

Telnet Attacks

- Attacking administration access to a switch or router.
- Insecure communication with unencrypted password.
- 1. Brute force password attack: generating passwords
- 2. Telnet DoS attack: prevents Telnet process to accept legitimate connections

Mitigation

- Use SSH
- Filter VTY access using ACL
- Use strong password
- Apply AAA authentication

cisco.

MAC Address Table Flooding Attacks (CAM Table Overflow)

- An attacker sends frames with spoofed source MAC address
- A switch assigns MAC addresses to the port in the CAM table
- If MAC table is full, no more addresses can be inserted and the switch broadcasts every.

Mitigating CAM Overflow using Port Security

VLAN Attacks (VLAN spoofing)

- An attacker pretends to be a switch.
- He imposes 802.1Q trunk using DTP communication.
- When successful, a trunk between a switch and a host is established.
- Attacker can access all VLANs.

Mitigating VLAN attacks

- Explicitly configure access links
- Disable DTP auto trunking using switchport non-negotiate
- Manually enable trunk links
- Set the native VLAN to others than 1
- Disable unused port and assign them to a black-hole VLAN.

DHCP Attacks

- DHCP spoofing attack using a roque DHCP server
- DHCP starvation attack an attacker leases all available IP addresses

Mitigating DHCP attacks using DHCP snooping

- Enable DHCP snooping on a interface or a VLAN
- Define trusted ports to upstream DPHC servers (explicitly configured)
- Define untrusted ports to hosts (default)

User Access Control on L2 using AAA

- AAA Framework: Authentication, Authorization, Accounting
- Router/switch authenticates a user via username and password.
- Implementing AAA in Cisco devices:
 - 1. Local AAA Authentication: local user database
 - 2. Server-based AAA Authentication: central Radius/TACACS+ database

Port Based Authentication

- Configure 802.1x port-based authentication
- Client software provides authentication with the switch or AP
- Switch (Authentication) uses local database or contact authentication server (Radius, TACACS+)

··|···|·· cisco

5.2 Syslog and NTP

© 2008 Cisco Systems, Inc. All rights reserved.

cisco.

Introduction to Syslog

- Protocol for logging computers and network device messages (RFC 5424)
- Supported by routers, switches, application servers, firewalls, etc.
- System messages sent across the network to syslog servers:
 - Gather logging information for monitoring and troubleshooting
 - Select the type of logging information that is captures

Syslog Operation

Syslog destinations

- Logging buffer
- Console line
- Terminal line
- Syslog server

Syslog message format

Severity levels 0-7

Severity Name	Severity Level	Explanation
Emergency	Level 0	System Unusable
Alert	Level 1	Immediate Action Needed
Critical	Level 2	Critical Condition
Error	Level 3	Error Condition
Warning	Level 4	Warning Condition
Notification	Level 5	Normal, but Significant Condition
Informational	Level 6	Informational Message
Debugging	Level 7	Debugging Message

Message format

seq no: timestamp: %facility-severity-MNEMONIC:description

Field	Explanation
seq no	Stamps log messages with a sequence number only if the service sequence-numbers global configuration command is configured.
timestamp	Date and time of the message or event, which appears only if the service timestamps global configuration command is configured.
facility	The facility to which the message refers.
severity	Single-digit code from 0 to 7 that is the severity of the message.
MNEMONIC	Text string that uniquely describes the message.
description	Text string containing detailed information about the event being reported.

Service Timestamp

- Log messages can be time-stamped.
- Timestamps are set using (conf) #service timestamp log datetime
- The clock can be configured manually or automatically using NTP.

Configuring Network Time Protocol (NTP) NTP Client NTP Server R1 10.1.1.12 10.1.1.1 10.1.1.1

R2(config)# ntp master 1

R1(config) # ntp server 10.1.1.1

cisco.

Syslog Server

- Provides a relatively user-friendly interface for viewing syslog output.
- Parses the output and displays the messages
- Network administrators can easily navigate the large amount of data.

ent Directory C:\Program File		•	Browse		
ver interfaces 192.168.1.3			•	Show Dir	
ftp Server Titp Client DHCP	server Syslog server Log viewer				
text		from	date		
Clear	Сору				

Router and Switch Commands for Syslog Clients

R1 (config)	logging	192.168.1.3	
-------------	---------	-------------	--

R1(config)# logging trap 4

R1(config) # logging source-interface g0/0

R1(config)# interface loopback 0

R1(config-if)#

*Jun 12 22:06:02.902: %LINK=3-UPDOWN: Interface Loopback0, changed state to up

*Jun 12 22:06:03.902: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up

*Jun 12 22:06:03.902: %SYS-6-LOGGINGHOST STARTSTOP: Logging to host 192.168.1.3 port 514 started - CLI initiated

R1 (config-if) # shutdown

R1(config-if)#

*Jun 12 22:06:49.642: %LINK-5-CHANGED: Interface Loopback0, changed state to administratively down *Jun 12 22:06:50.642: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to down

R1(config-if) # no shutdown

R1(config-if)#
*Jun 12 22:09:18.210: %LINK=3=UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:09:19.210: %LINEPROTO=5=UPDOWN: Line protocol on
Interface Loopback0, changed state to up
R1(config-if)#

Syslog Configuration

Rl# show logging
Syslog logging: enabled (0 messages dropped, 2 messages rate-limited, 0
flushes, 0 overruns, xml disabled, filtering disabled)
No Active Message Discriminator.
No Tractive Message Discriminator
no inactive resouge proclimitator.
Console logging: level debugging, 32 messages logged, xml disabled,
filtering disabled =
Monitor logging: level debugging, 0 messages logged, xml disabled,
filtering disabled
Buffer logging: level debugging, 32 messages logged, xml disabled,
Filtering disabled
Exception Logging: Size (4096 bytes)
Persistent logging: disabled
No active filter modules.
Trap logging: level informational, 34 message lines logged
Logging Source-Interface: VRF Name:
Log Buffer (8192 bytes):
*Jan 2 00:00:02.527: %LICENSE-6-FULA ACCEPT ALL: The Right to Use End User

Default Logging Service Settings

Presentation_ID

Verifying Syslog

R1# show logging include changed state to up
*Jun 12 17:46:26.143: %LINK-3-UPDOWN: Interface
GigabitEthernet0/1, changed state to up
*Jun 12 17:46:26.143: %LINK-3-UPDOWN: Interface Serial0/0/1,
changed state to up
*Jun 12 17:46:27.263: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernet0/1, changed state to up
*Jun 12 17:46:27.263: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Serial0/0/1, changed state to up
*Jun 12 20:28:43.427: %LINK-3-UPDOWN: Interface
GigabitEthernet0/0, changed state to up
*Jun 12 20:28:44.427: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernet0/0, changed state to up
*Jun 12 22:04:11.862: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Loopback0, changed state to up
*Jun 12 22:06:02.902: %LINK-3-UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:06:03.902: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Loopback0, changed state to up
*Jun 12 22:09:18.210: %LINK-3-UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:09:19.210: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Loopback0, changed state to up
*Jun 12 22:35:55.926: %LINK-3-UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:35:56.926: %LINEPROTO-5-UPDOWN: Line protocol on

··|···|·· cisco

5.3 SNMP

© 2008 Cisco Systems, Inc. All rights reserved.

Simple Network Management Protocol (SNMP)

- SNMP allows administrators to monitor devices on an IP network.
- SNMP Elements: Manager, Agent, MIB

SNMP Operation: Trap, Get, Set

Presentation_ID

cisco.

Simple Network Management Protocol (SNMP)

Operation	Description
get-request	Retrieves a value from a specific variable.
get-next-request	Retrieves a value from a variable within a table; the SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.
get-bulk-request	Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data. (Only works with SNMPv2 or later.)
get-response	Replies to a get-request, get-next-request, and set-request sent by an NMS.
set-request	Stores a value in a specific variable.

Simple Network Management Protocol (SNMP)

SNMP Versions and Security

Model	Level	Authentication	Encryption	Result
SNMPv1	noAuthNoPriv	Community string	No	Uses a community string match for authentication.
SNMPv2c	noAuthNoPriv	Community string	No	Uses a community string match for authentication.
SNMPv3	noAuthNoPriv	Username	No	Uses a username match for authentication (an improvement over SNMPv2c).
SNMPv3	authNoPriv	Message Digest 5 (MD5) or Secure Hash Algorithm (SHA)	No	Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.
SNMPv3	authPriv (requires the cryptographic software image)	MD5 or SHA	Data Encryption Standard (DES) or Advanced Encryption Standard (AES)	 Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Allows specifying the User-based Security Model (USM) with these encryption algorithms: DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard. 3DES 168-bit encryption. AES 128-bit, 192-bit, or 256-bit encryption.

Configuring SNMP

1. (Required) Configure the community string and access level

snmp-server community string ro | rw

2. (Optional) Set the location of the device

snmp-server location text

3. (Optional) Set the system contact

snmp-server contact text

4. (Optional) Restrict SNMP access to by an ACL

snmp-server community string access-list-number

5. (Optional) Specify the recipient of the SNMP trap operations

snmp-server host host-id [version {1 | 2c | 3 [auth
noauth | priv]}] community-string

6. (Optional) Enable traps on an SNMP agent

snmp-server enable traps notification-types

Configuring SNMP

R1(config)# snmp-server community batonaug ro SNMP_ACL R1(config)# snmp-server location NOC_SNMP_MANAGER R1(config)# snmp-server contact Wayne World R1(config)# snmp-server host 192.168.1.3 version 2c batonaug R1(config)# snmp-server enable traps R1(config)# ip access-list standard SNMP_ACL R1(config-std-nacl)# permit 192.168.1.3

Verifying SNMP Configuration

R1# show snmp

Chassis: FTX1636848Z Contact: Wayne World Location: NOC SNMP MANAGER 0 SNMP packets input 0 Bad SNMP version errors 0 Unknown community name 0 Illegal operation for community name supplied 0 Encoding errors 0 Number of requested variables 0 Number of altered variables 0 Get-request PDUs 0 Get-next PDUs 0 Set-request PDUs 0 Input queue packet drops (Maximum queue size 1000) 19 SNMP packets output 0 Too big errors (Maximum packet size 1500) 0 No such name errors 0 Bad values errors 0 General errors 0 Response PDUs 19 Trap PDUs SNMP Dispatcher: queue 0/75 (current/max), 0 dropped SNMP Engine: queue 0/1000 (current/max), 0 dropped SNMP logging: enabled Logging to 192.168.1.3.162, 0/10, 19 sent, 0 dropped.

show snmp

R1# show snmp community			
Community name: ILMI Community Index: cisco0 Community SecurityName: ILMI storage-type: read-only	active		
Community name: batonaug Community Index: cisco7 Community SecurityName: batonaug storage-type: nonvolatile	active	access-list:	SNMP_ACL
Community name: batonaug@1 Community Index: cisco8 Community SecurityName: batonaug@1 storage-type: nonvolatile	active	access-list:	SNMP_ACL

show snmp community

SNMP Best Practices

SNMPv3

- Message Encryption and Authentication
 - Message integrity and authentication 1.
 - Encryption 2.
 - 3. Access control

Configuring SNMPv3

Step 1: Configure an ACL to permit access to the protected management network.

Router(config)# ip access-list standard acl-name
Router(config-std-nacl)# permit source net

Step 2: Configure an SNMP view.

Router(config) # snmp-server view view-name oid-tree

Step 3: Configure an SNMP group.

Router(config) # snmp-server group group-name v3 priv read view-name access [aclnumber | acl-name]

Step 4: Configure a user as a member of the SNMP group.

Router(config) # snmp-server user username group-name v3 auth {md5 | sha} authpassword priv {des | 3des | aes {128 | 192 | 256}} privpassword

Configuring SNMPv3

··|···|·· cisco

5.4 NetFlow

© 2008 Cisco Systems, Inc. All rights reserved.

cisco.

Introduction to NetFlow

- Monitoring system to collect statistics on packets flowing through a device.
- Defined by RFC 3954 (NetFlow version 9)
- Architecture
 - NetFlow Exporter (NetFlow Enabled Router, NetFlow Probe)
 - NetFlow Collector and Analyzed software
 - NetFlow Protocol

Network Flows

The flow is a set of packets having the same combination of seven key fields.

- Source and destination IP address
- Source and destination port number
- Layer 3 protocol type
- Type of service (ToS) marking
- Input logical interface

NetFlow Configuration

1. Configure NetFlow data capture from ingress and egress interface

(conf-if) # ip flow ingress

(conf-if) # ip flow egress

2. Configure NetFlow data export

(conf)# ip flow-export destination ip-address {udp-port}

3. (Optional) Configure NetFlow version (1, 5, 7, 8, 9)

(conf)# ip flow-export version version

4. (Optional) Define source interface as the source of packets sent to a collector

(conf) # ip flow-export source typenumber

NetFlow Configuration

R1(config) # interface GigabitEthernet 0/1
R1(config-if)# ip flow ingress
R1(config-if)# ip flow egress
R1(config-if)# exit
R1(config)# ip flow-export destination 192.168.1.3 2055
R1(config)# ip flow-export version 5

Verifying NetFlow

R1# show ip o	ache flow											
IP packet siz	e distrib	ution	(178617	tota	L packe	ets):						E
1-32 64	96 128	160	192 2	24 25	56 288	320	352	384	416	448	480	
.002 .080	.008 .005	.001	.000 .0	01 .00	.000	000.	.000	.000	.000	.000	.000	
512 544	576 1024	1536 2	2048 25	60 30'	72 3584	4 4096	4608					
.000 .000	.000 .000	.895	.000 .0	00.00	00.00	000.	.000					
IP Flow Swite	hing Cach	e, 278	544 byt	es								
5 active, 4	091 inact	ive, 19	573 add	ed								
18467 ager	polls, 0	flow a	lloc fa	ilures	з							
Active flow	s timeout	in 1 r	ninutes									
Inactive fl	.ows timeo	ut in 3	15 seco	nds								
IP Sub Flow C	Cache, 340	56 byte	es									
5 active, 1	.019 inact	ive, 15	569 add	ed, 1	569 add	ded to	flow					
0 alloc fai	lures, 0	force :	free									
1 chunk, 1	chunk add	ed										
last cleari	ng of sta	tistic	s never									
Protocol	Total	Flows	s Pac	kets I	Bytes	Packet	ts Act	tive(S	Sec)]	[dle(S	Sec)	
	Flows	/Sec	c /	Flow	/Pkt	/Se	ec	/Flo	WC	/Flo	WC	
TCP-Telnet	3	0.0	C	3	50	0	.0	1.	.0	15.	0	
TCP-WWW	245	0.0	C	6	93	0	.0	0.	.3	2.	4	
TCP-other	529	0.0	C	27	57	0	.2	0.	.7	6.	2	
UDP-other	328	0.0	C	6	107	0	.0	2.	.4	15.	3	
ICMP	711	0.0	C	226	1261	2	.4	0.	.2	15.	4	
Total:	1816	0.0	C	98	1137	2	.7	0.	.8	11.	0	-
[T
SrcIf	SrcTPaddi	ress	DstIf	Г	stTPad	dress	Pr	SrcF	Dst.P	Pkt	s	
G0/1	192.168.1	1.3	Local	1	92.168	3.1.1	06	100E	3 01BB		1	
G0/1	192.168.1	1.3	Local	1	92,168	3.1.1	01	0000	0303		1	
G0/1	192.168.1	1.3	Local	1	92.168	3.1.1	01	0000	0800		1	

Rl**# show ip flow interface** GigabitEthernet0/1 ip flow ingress ip flow egress

Rl# show ip flow export
Flow export v5 is enabled for main cache
Export source and destination details : VRF ID : Default
Destination(1) 192.168.1.3 (2055)
Version 5 flow records
1764 flows exported in 532 udp datagrams
0 flows failed due to lack of export packet
0 export packets were sent up to process level
0 export packets were dropped due to no fib
0 export packets were dropped due to adjacency issues
0 export packets were dropped due to fragmentation failures
0 export packets were dropped due to encapsulation fixup failures

NetFlow Collector

NetFlow Collector Functions

NetFlow Collector Top Talkers

··|···|·· cisco

5.5 Switch Port Analyzer

© 2008 Cisco Systems, Inc. All rights reserved.

Cisco Switch Port Analyzer (SPAN)

Port mirroring

cisco.

- The port mirroring feature allows a switch to copy and send Ethernet frames from specific ports to the destination port connected to a packet analyzer.
- The original frame is still forwarded in the usual manner.

Cisco Switch Port Analyzer (SPAN)

Analyzing Suspicious Traffic

- Packet analyzers
- Intrusion Prevention Systems (IPSs)

Local SPAN

Term	Definition
Ingress traffic	This is traffic that enters the switch.
Egress traffic	This is traffic that leaves the switch.
Source (SPAN) port	This is a port that is monitored with use of the SPAN feature.
Destination (SPAN) port	This is a port that monitors source ports, usually where a packet analyzer, IDS or IPS is connected. This port is also called the monitor port.
SPAN session	This is an association of a destination port with one or more source ports.
Source VLAN	This is the VLAN monitored for traffic analysis.

Remote SPAN (RSPAN)

Term	Definition
RSPAN source session	This is the source port/VLAN to copy traffic from.
RSPAN destination session	This is the destination VLAN/port to send the traffic to.
RSPAN VLAN	 A unique VLAN is required to transport the traffic from one switch to another. The VLAN is configured with the remote-span vlan configuration command. This VLAN must be defined on all switches in the path and must also be allowed on trunk ports between the source and destination.

SPAN Configuration

Use monitor session global configuration command

Associate a SPAN session with a source port

Switch(config)# monitor session number source [interface interface | vlan vlan]

Associate a SPAN session with a destination port

Switch(config) # monitor session number destination [interface interface | vlan vlan]

S1(config)# monitor session 1 source interface fastethernet 0/1 S1(config)# monitor session 1 destination interface fastethernet 0/2

SPAN Verification

Session
e
led

S1#

#