··|··|·· cisco

Chapter 7: Network Evolution

Connecting Networks

Chapter 7

- 7.1 Internet of Things
- 7.2 Cloud and Virtualization
- 7.3 Network Programming

··|··|· cisco

7.1 Internet of Things

© 2008 Cisco Systems, Inc. All rights reserved.

IoT Elements

cisco.

- IoT = connecting things of physical world to the Internet
- Cisco estimates that 50 billion things will be connected to the Internet by 2020.
- 99% of things are currently unconnected.
- Dissimilar networks are converging to share the same infrastructure with:
 - security
 - analytics
 - management

- An model designed to managed large-scale systems of different endpoints and platforms.
- It uses a set of new and existing products and technologies
- Identifies foundational elements:
 - Connectivity, Fog Computing, Security, Data Analytics, Management and Automation, Application Enablement Platform

Applications						
Network Fo Connectivity	og Computing	Security (Cyber and Physical)	Data Analytics	Management and Automation	Application Enablement Platform	

1. Network Connectivity

- It identifies devices that can be used to provide IoT connectivity to many diverse industries and applications.
- IoT devices:
 - Industrial routers and switches
 - IoT gateways
 - Wireless devices
 - Low-power, wide-area wireless devices
 - Embedded routers and switches

2. Fog Computing

cisco.

- Client-server model: client devices request services of servers
- Cloud-computing model: services dispersed globally in distributed data centers
- Fog computing model: computing moved to edge devices that run applications locally

7

3. Security

It offers scalable cybersecurity solutions, enabling an organization to quickly and effectively discover, contain, and remediate an attack to minimize damage.

- Operational technology (OT) security: power plants, factory process lines, ...
- IoT network security: securing switches, routers, ASA, FirePower IPS
- IoT physical security: surveillance IP cameras, etc.

4. Data Analytics

1 11 11

- Analytics infrastructure consists of distributed network components and IoT-specific, application programming interfaces (APIs).
- Number of sensors and other IoT end devices grows exponentially
 - They produce a constant stream of data
 - Structured and unstructured data
- Process data rapidly and transformed into actionable intelligence.

Big Data processing:

- Apacha Hadoop
- Spark
- Cassandra
- Kafka

Six Pillars of the IoT System

5. Management and Automation

Products can be customized for specific industries to provide enhanced security and control and support.

- IoT Field Network Director: management system for IoT networks
- Cisco Prime (former CiscoWorks): network management software
- Cisco Video Surveillance Manager: system for physical security and video surveillance

6. Application Enablement Platform (AEP)

- It provides the infrastructure for application hosting and application mobility between cloud and fog computing.
- Fog nodes host applications -> applications closer to the object they need to monitor, control, analyze
 - Routers with Cisco IOx (IOS + Linux) allow to host applications

Network Connectivity Fog Computing Security (Cyber and Physical) Image: Cyber and Physical Image: Cybe	plication ablement latform

cisco.

·IIIII CISCO

7.2 Cloud and Virtualization

© 2008 Cisco Systems, Inc. All rights reserved.

cisco.

Cloud Computing

- On-demand access to a shared pool of configurable computing resources.
- It involves large numbers of computers connected through a network that can be physically located anywhere.
- Cloud provider offers services and computing in a virtual environment.

Cloud Computing Services

- Software as a Service (SaaS)
 - Applications delivered over the web to the end users (email, communication, Offfice 365)
- Platform as a Service (PaaS)
 - A user controls software development while the provider provides the networks, servers, storage, OS, middleware, database, etc.
- Infrastructure as a Service (laaS)
 - Network hardware and software to power servers, storage, networks and operating systems.
- IT as a Service (ITaaS)
 - IT professionals support applications, platforms and infrastructures.

Cloud Models

- Public clouds
 - available to the general population over the Internet
- Private clouds
 - intended for a specific organization, strict access security.
- Hybrid clouds
 - made up of two or more cloud models; access based on user access rights.
- Community clouds
 - created for exclusive use by a specific community, such as healthcare organizations, with special authentication and confidentiality requirements.

Cloud Computing vs. Data Center

Data center

 A data storage and processing facility run by an in-house IT department or leased offsite.

Cloud computing

- An off-premise service that offers ondemand access to a shared pool of configurable computing resources.
- A service provided by data centers.
- Cloud service providers use data center to host their cloud services and cloud-based resources.

Server virtualization

Dedicated servers

- Historically, enterprise networks consisted of a set of application servers required for network services
- Advantages: independent devices, medium performance required
- Disadvantages: underused machines, purchase and maintenance costs, energy, individual configuration and management

Server virtualization

- Consolidates resources and decreases number of required servers.
- Multiple operating systems with applications residing on a single hw

Benefits

- Less energy consumed
- Less space required
- Easier prototyping
- Faster server provisioning
- Increased server uptime
- Improved disaster recovery
- Legacy support

cisco.

Server virtualization

- Separates the OS from the hardware allowing multiple operating systems to exist on a single hardware platform.
- The hypervisor
 - Adds an abstraction layer on top of the real physical hardware used to create virtual machines.
 - Each virtual machine runs a complete and separate operating system.

Type 1 and 2 Hypervisors

 Type 1 "Bare Metal" approach in which the hypervisor is installed directly on the hardware, e.g, enterprise servers, data centers.

Windows OS	Linux OS	UNIX OS			
Hypervisor					
Hardware					
Server					

- Direct access to the hw resources.
- More efficient, scalable, robust.
- It requires management console.
- E.g., Oracle VM Server for Sparc, Microsoft Hyper-V, VMware ESXi
- Type 2 "Hosted" approach in which the hypervisor is installed on top of an existing operating system.

- Guest OS runs as a process on the host.
- Cheaper solution, less scalable.
- Can run on common hardware and OS.
- E.g., VMware Player, VirtualBox, Mac OS X Parallels, QEMU

··|···|·· cisco

7.3 Network Programming

© 2008 Cisco Systems, Inc. All rights reserved.

Control Plane and Data Plane

- A network device contains the following planes:
 - Control plane Uses CPU process to calculate Layer 2 and Layer 3 route forwarding information.
 - Data plane Forwards traffic flows using a data plane processor, such as a digital signal processor (DSP), without the CPU getting involved.
- SDN virtualizes the network, removing the control plane function from each device and performing it on a centralized controller.

Software-Defined Networking

- Traditional Architecture
 - The control plane and data plane in the same device.
- SDN Architecture

cisco.

- SND virtualizes network -> control plane moved to a central SDN controller
- SDN controller = a logical entity that controls data planes of virtual switches

Software-Defined Networking

 The SDN framework uses northbound APIs to communicate with upstream applications and southbound APIs to define the behavior of downstream routers and switches.

cisco.

SDN Controller

- It defines the data flows that occur in the SDN data plane.
- Each flow traveling through the network gets permission from the controller.
- The controller populates 3 tables implemented in hardware via OpenFlow protocol:

Flow table

 matches incoming packets to a particular flow and specifies the functions that are to be performed on the packets.

Group table

 triggers a variety of actions that affect one or more flows.

Meter table

 triggers a variety of performance-related actions on a flow.

Cisco Application Centric Infrastructure (ACI)

- The ACI automates the network, accelerates application deployments, etc.
- ACI components:

cisco.

- Application Network Profile (ANP) a collection of end-point groups (EPG), their connections, and the policies that define those connections
- Application Policy Infrastructure Controller (APIC) manages switches
- Cisco Nexus 9000 Series switches with application-aware switching fabric

cisco.

Spine-Leaf Topology with Cisco ACI

APIC controller

- defines the switching policy
- programs the leaf switches to forward traffic based on the defined policy

cisco.

SDN Types

- Device-based SDN applications running on the device itself, e.g., Cisco OnePK
- Controller-based SDN centralized controller that has knowledge of all devices in the network. The applications manage devices and manipulate flows via API, e.g., OpenDaylight.
- Policy-based SDN policy layer included, e.g., Cisco APIC-EM.

#