

Routing – outgoing vs incomming

ping 8.8.8.8

How to obtain addresses?

How to connect to the Internet?

- Connect to another network that is already connected
- **Buy** from the network Internet Transit

Standard practice is 95/5 percentil

Internet Transit Prices (1998-2015) U.S. Internet Region				
Year	Prices (in Mbps, min commit)	% Decline		
1998	\$1200 per Mbps			
1999	\$800 per Mbps	33%		
2000	\$675 per Mbps	16%		
2001	\$400 per Mbps	40%		
2002	\$200 per Mbps	50%		
2003	\$120 per Mbps	40%		
2004	\$90 per Mbps	25%		
2005	\$75 per Mbps	17%		
2006	\$50 per Mbps	33%		
2007	\$25 per Mbps	50%		
2008	\$12 per Mbps	52%		
2009	\$9.00 per Mbps	25%		
2010	\$5.00 per Mbps	44%		
2011	\$3.25 per Mbps	35%		
2012	\$2.34 per Mbps	28%		
2013	\$1.57 per Mbps	33%		
2014	\$0.94 per Mbps	40%		
2015	\$0.63 per Mbps	33%		
Courses				

Source: DrPeering.net

Every year the ISPs say to me things like,

"Transit prices can't get any lower," and *"No one is making any money at these prices."* And every year, the prices drop again.

-William B. Norton

Costs with commit

Commit	Unit Price per Mbps	Min Spend
10 Mbps	\$12	\$120
100 Mbps	\$5	\$500
1 Gbps	\$3.5	\$3500
10 Gbps	\$1.20	\$12 000
100 Gbps	\$0.70	\$70 000

Monthly Bill = max(TransitVolumeAt95th*Price, Commit Volume*Price)

ISP A buys transit from ISP B for \$5 per Mbps. ISP A sends 500 Mbps, receives 800 Mbps. 95/5 percentil is used for cost calculation.

If ISP A receives offer 3\$ per Mbps with 1Gbps commit. Is the offer budget-wise?

Free band usage

- Traffic is usually predictable
 - Users at work
 - Home users

- If a link is not used, it's possible to use it for different purpose
 - Preload data from CDN cache
 - Mix business and home users

Capture access + content

Capture access + content

Capture access + content

Other transit games

- 95/5 percentil usage
- Multi-Homing
- Routing "Magic"
- Link to cheaper place

Peering

Peering

A voluntary interconnection of networks for the purpose of exchanging traffic between the users of each network

time

- Why it is neccessary if transit price goes down?
 - VOLUME!

Peering – properties

- Peering is not transitive!
 - If A peers with B and C peers with B, it does not mean that A can reach C via B!
- Peering is not a substitution for transit connection!

- Peering is usually without direct fees (free)
 - Pay peering exists as well
 - Indirect cost can apply

Peering – motivation

- Lower transit costs
- Better user-experience
- Lower latency and packet loss \rightarrow more user traffic
 - If user is accounted based on number of transferred data, the user will transfer more data = higher revenue
- Marketing advantage

BGP Path manipulation

Best Route Selection Process

How to influence the traffic flow?

- Attribute LOCAL_PREF describes route preference
 - This attribute is exchanged only through iBGP neighborship because routers in different AS could prefer other routes
 - Higher means better!
 - By default routes have LOCAL_PREF set on 100
 - Depends on the vendor

How to influence the traffic flow?

- MED indicates to other AS which route to use when entering our AS
 - MED is initially send from our AS via eBGP to neighbor AS. Overthere, MED value is employed but does not cross borders of this AS (it traverses to other ASs with value set on 0)
 - MED is called also metric and it behaves just like metric of any IGP – Lower means better
 - Default MED is 0

MED Use-Case

How to influence the traffic flow?

AS-Prepending

- manipulates the AS Path that its advertised to BGP neighbors
- Prepend number of own ASN to make the path longer
- Influence the incoming traffic flow

R(config)# route-map PREPEND permit 10 R(config-route-map)# set as-path prepend 65000 65000 R(config-route-map)# router bgp 65000 R(config-router)# neighbor 192.168.1.1 route-map PREPEND out

BGP communities

What are BGP communities?

- Defined by RFC1997 (August 1996)
- a 32-bit integer which is attached to a BGP route as an optional transitive attribute
 - AKA: Not required, and exportable between neighbors
 - Multiple communities can be attached to one route
- Well-known (hard-coded) communities exist
 - No-Export, No-Advertise, etc.

But mostly, the communities and how they are interpreted are defined by each individual network.

How are communities used

To add additional information to a BGP route

- Any data you can encode into a 32 bit integer
- From you to others (providing information)
- From others to you (requesting actions)
- To take action based on that information
 - E.g. Alter route attributes on demand

Control the import/export of routes

How are communities used

• A 32-bit integer isn't always easy to work with

- More common convention is to split into two 16-bit values
- First value is intended to define the scope or "target"
- Second value is arbitrary data for the targeted network
 - Whatever data you're trying to encode

- For example: 701:1234
 - Intended for AS701
 - Community value is "1234"

Usage of BGP Communities

Informational tags

- Communities set by and sent from a provider network, to tell their customers (or other interested parties) something about that route
- Encode simple arbitrary data
 - No standards, each network defines its own mapping
 - Which you must then publish somewhere for others to use
 - Ex: Continent
 - (1 = North America, 2 = Europe, etc)
 - Ex: Relationship (1 = Transit, 2 = Public Peer, etc)

Informational tags example

For example: 1234:TCRPP

- T = Type of Relationship
- C = Continent Code
- R = Region Code
- PP = POP Code
- The community 1234:31311 could be parsed as:
 - Private Peer
 - North America
 - Mid-Atlantic Region
 - Ashburn VA POP Code

Usage of BGP Communities

Action tags

- Communities set by and sent from a customer network, to influence the routing policies of the provider network
- Two main types of actions exists
 - Export control (do or do not announce the prefix to X)
 - BGP Attribute manipulation
- Typical BGP attributes to be influenced include
 - AS-PATH
 - Local-Preference
 - Multi-Exit Discriminator (MED)
 - Next-Hop Address
- Anything else you can set in policy (color/weight/etc)

Action tags examples

Often the first half specifies the target ASN

• E.g. 1239:1234 = Apply code "1234" to neighbor ASN 1239

- Example of actions:
 - Apply action only to a specific geographic region
 - E.g. No-export to neighbors in North America, etc.
 - Apply action only to a specific relationship
 - E.g. Prepend to Peers, No-export to Transits, etc.
 - Apply action only to a specific neighbor ASN
 - E.g. Prepend to AS1234
 - The most powerful actions are combinations
 - E.g. No-export to Customers in North America

Action tags examples

Often the first half specifies the target ASN

• E.g. 1239:1234 = Apply code "1234" to neighbor ASN 1239

- Example of actions:
 - Apply action only to a specific geographic region
 - E.g. No-export to neighbors in North America, etc.
 - Apply action only to a specific relationship
 - E.g. Prepend to Peers, No-export to Transits, etc.
 - Apply action only to a specific neighbor ASN
 - E.g. Prepend to AS1234
 - The most powerful actions are combinations
 - E.g. No-export to Customers in North America

Cost to connect to IXP

- Transport to the IXP
- Device cost
- Colocation costs
- Peering port costs

- Transport + colocation + peering port cost + device price = \$5 000/month
- How much traffic do I have to dispatch in IXP to be cost wise to use it? Let's assume 10 Gbps port.

Mbps	Price				
100 Mbps	\$50 per Mbps				
1000 Mbps	\$5 per Mbps				
1200 Mbps	\$4,17				
1400 Mbps	\$3.57				
1500 Mbps	\$3.34				

Public peering

Using IXP switch for peering with everyone in IXP

Benefits

- Aggregation large number of peering session use the same port
- Easier maintain rychle otestuji novou peering session
- Not other cost
- Can be cheaper in some cases
- Typically use a link with higher capacity can eliminates peaks in traffic

Private peerring

Use dedicated circuit

Benefits

- Easier monitoring SNMP is enough, NetFlow is not necessary
- Easier for debuging less devices, the debuging does not have to be coordinated with IXP operator
- Security there's no other device between two peers
- Private peering is sometimes requested/required if traffic cross some threshold

Peering ecosystem

 Operator that has access to all networks without paying for transit

http://drpeering.net/

Tier I – Level3

Tier II

Pays for the transit to some networks in the Internet

Content provider

Typically do not peer, only buy transit

- Exception is big content providers that build their own large content networks (Google, Apple, Microsoft)
- Main purpose is to create a content

Internet

Will ISP Y accept a peering request from ISB B? Will ISP Y accept a peering request from CP C? Will ISP Y accept a peering request from ISP A?

Peering Policy Lifecycle

Changes in peering ecosystem

- Emerging of very large ISP with huge amount of end-users (eyball networks)
- Emerging of very large content providers that builts their own networks
 - Large Scale Network Savvy Content Providers
- Emerging of CDN
- Video!
- Emerging of pay private peering

000

www.root.cz/clanky/superproblemy-se-super-network-hosting-em/

SUPERPROBLÉMY SE SUPER(NETWORK|HOSTING)EM

(Aktualizováno) Málokdo z běžných konzumentů internetových služeb tuší, jaké tuhé boje probíhají o jejich pakety ve struktuře sítě internet. Idylické doby vzájemného porozumění mezi správci síťové infrastruktury zaštítěné síťovou neutralitou často berou za své a nastupuje prosazování tvrdých komerčních zájmů.

9. 9. 2013 0:00 Adam Covex Přibyl

Nálepky: NIX.CZ

Jedním z hráčů na tomto trhu, který si nebere servítky, je právě SuperNetwork. SuperNetwork je již několik let znám svými aktivitami, kterými se v podstatě snaží obcházet sdružení NIX, kterého je sám členem. Jen krátce – zájmové sdružení právnických osob NIX (Neutral Internet eXchange) sdružuje velké hráče na trhu poskytování internetového připojení a obsahu. Trochu zjednodušeně se dá říci, že si v rámci něj bezplatně vyměňují své datové toky, protože vzájemné účtování by často skončilo nulou

Q

000	Proč nebyla Lupa v	včera dos 🛪 🧕	Proc se dnes ne	musite dos ×					±21	
← → C 🗋 www.lupa.cz/clanky/proc-nebyla-lupa-vcera-dostupna-ze-site-upc/										
LU	P A	CZ	Server o	českém Int	ternetu			Spam "Výše pohledávky n	Eupa.cz do mailu (a vašem účtu" Konec True	
Články	Startupy	Měření ry	ychlosti	Nástroje	Fórum	Blogy	Práce v ľ	T E-commerce		
E-governmen	it		SEO			v	ideo na Interne	tu	Telemedicína	
100	Nepíšete beri elektronicky? automatická j	? Přijde			cz se probu tualizace h	výbe 🛛	cht	tributoři: diváci pořá ějí filmy spíš na Ray a DVD	d Teleme proráže ji zdrav	

Proč nebyla Lupa včera dostupná ze sítě UPC?

Výpadek peeringu, který zákazníkům UPC znepřístupnil Lupu a další servery v síti Master Internetu, nebyl technickou závadou. Šlo o důsledek obchodního sporu, který se týká zpoplatnění peeringu.

Síťová neutralita

NETFLIX

STOP CABLE COMPANY FUCKERY

the INTERNET NoveOn.ord CREDO

DISPELLING THE CONGESTION MYTH

