Chapter 1: Packet Forwarding Instructor Materials

CCNP Enterprise: Core Networking

Network Device Communication

- The primary function of a network is to provide connectivity between devices.
- Today most everything is based on Transmission Control Protocol/Internet Protocol (TCP/IP).

Network Device Communication Collision Domains on a Hub Versus a Switch

- Unknown unicast flooding occurs when a packet contains a destination MAC address that is not in the switch's MAC address table. The switch forwards the packet out of every switch port.
- Broadcast traffic is network traffic intended for every host on the LAN and is forwarded out of every switch port interface.
- Network broadcasts do not cross Layer 3 boundaries (from one subnet to another).

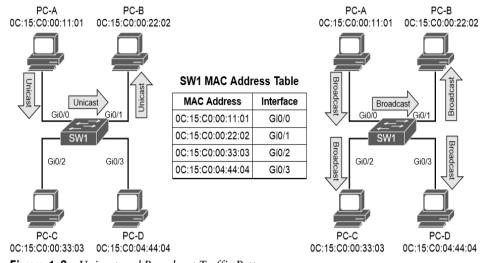


Figure 1-3 Unicast and Broadcast Traffic Patterns

Network Device Communication Virtual LANS

Adding a router between LAN segments helps shrink broadcast domains.

•Virtual LANs (VLANS) provide logical segmentation by creating multiple broadcast domains on the same network switch. VLANs provide higher utilization of switch ports because a port can be associated to the necessary broadcast domain, and multiple broadcast domains can reside on the same switch.

•VLANS are defined in the IEEE 802.1Q standard, which sates that the 32 bits are added to the packet header with the following fields: tag Protocol identifier (TPID), priority code point (PCP), drop eligible indicator (DEI), and VLAN identifier (VLAN ID).

Destination Source TPID VLAN Destination Source PCP DEI Payload (0x8100) MAC MAC ID IP IP (16-bit) (3-bit) (1-bit) (12-bit) 802.1Q Fields

Figure 1-4 displays the VLAN packet structure.

Network Device Communication Creating a VLAN

•VLANs are created in the global configuration.

•VLANs are named in the VLAN sub-global mode.

Example 1-1 Creating a VLAN

```
SW1# configure term
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)# vlan 10
SW1(config-vlan)# name PCs
SW1(config-vlan)# vlan 20
SW1(config-vlan)# name Phones
SW1(config-vlan)# name Guest
```

VLANs and their port assignment are verified with the **show vlan** [{**brief** | **id** *vlan-id* | name *vlanname* | **summary**}] command.

The output is split into four main sections: VLAN-to-port assignments, system MTU, SPAN sessions, and private VLANs.

Network Device Communication Optional show vlan keywords

•Optional **show vlan** keywords provide the following benefits:

- **Brief -** Displays only the relevant port-to-VLAN mappings.
- Summary Displays a count of VLANs, VLANs participating in VTP, and VLANs that in the extended VLAN range.
- **id** *vlan-id* Displays all the output from the original command but filtered to only the VLAN number that is specified.
- name vlanname Displays all the output from the original command but filtered to only the VLAN name that is specified.

Network Device Communication Access Ports

Access ports are the fundamental building blocks of a managed switch.

- An access port is assigned to only one VLAN.
- It carries traffic from the specified VLAN to the device connected to it or from the device to other devices on the same VLAN.
- Catalyst switch ports are Layer 2 by default.
- Use the command **switchport mode access** to manually configure a port as an access port.
- A specific VLAN is associated to the port with the command switchport access {vlan vlan-id | name vlanname}.

Example 1-4 Configuring an Access Port

SW1# configure terminal				
Enter configuration commands, one per line. End with CNTL/Z.				
SW1(config)# vlan 99				
SW1(config-vlan) # name Guests				
SW1(config-vlan) # interface gi1/0/15				
SW1(config-if)# switchport mode access				
SW1(config-if)# switchport access vlan 99				
SW1(config-if)# interface gi1/0/16				
SW1(config-if)# switchport mode access				
SW1(config-if)# switchport access vlan name Guest				

```
SWl# show running-config | begin interface GigabitEthernet1/0/15
interface GigabitEthernet1/0/15
switchport access vlan 99
switchport mode access
!
interface GigabitEthernet1/0/16
switchport access vlan 99
switchport mode access
```

Network Device Communication Trunk Ports

•Trunk ports can carry multiple VLANs. They are typically used when multiple VLANs need connectivity between a switch and another switch, router, or firewall and use only one port. Trunk ports are statically defined on Catalyst switches with the interface command **switch-port mode trunk**.

Here is an example of configuring a trunk port:

```
Example 1-5 Configuring a Trunk Port
```

```
SW1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)# interface gi1/0/2
SW1(config-if)# switchport mode trunk
SW1(config-if)# interface gi1/0/3
SW1(config-if)# switchport mode trunk
```

Network Device Communication Trunk Ports (Cont.)

The command **show interfaces trunk** provides a lot of valuable information:

- The first section lists all the interfaces that are trunk ports, the status, the association to an EtherChannel, and whether a VLAN is a native VLAN.
- The second section of the output displays the list of VLANs that are allowed on the trunk port. Traffic can be minimized on trunk ports to restrict VLANs to specific switches, thereby restricting broadcast traffic, too.
- The third section displays the VLANs that are in a forwarding state on the switch. Ports that are in blocking state are not listed in this section.

SW1# show	v interfaces tr	unk					
! Section	n 1 displays th	e native VLAN associ	ated on this.	port, the status and			
! if the	port is associ	ated to a EtherChann	el				
Port	Mode	Encapsulation	Status	Native vlan			
Gi1/0/2	on	802.1q	trunking	1			
Gi1/0/3	on	802.1q	trunking	1			
! Section	n 2 displays al	l of the VLANs that	are allowed	to be transmitted across			
! the tru	ink ports						
Port	Vlans allow	Vlans allowed on trunk					
	1-4094						
Gi1/0/3	1-4094						
Port		ed and active in man	lagement doma	in			
	1,10,20,99						
Gi1/0/3	1,10,20,99						
			are allowed	across the trunk and are			
! in a sp	panning tree fo	rwarding state					
Devel							
Port	-	anning tree forwardi	ng state and	i not pruned			
	1,10,20,99						
Gi1/0/3	1,10,20,99						

Network Device Communication Native VLANs

In the 802.1Q standard, any traffic that is advertised or received on a trunk port without the 802.1Q VLAN tag is associated to the native VLAN.

- The default native VLAN is VLAN 1.
- When a switch has two access ports configured as access ports and associated to VLAN 10—that is, a host attached to a trunk port with a native VLAN set to 10—the host could talk to the devices connected to the access ports.
- The native VLAN should match on both trunk ports, or traffic can change VLANs unintentionally. While connectivity between hosts is feasible (assuming that they are on the different VLAN numbers), this causes confusion for most network engineers and is not a best practice.
- A native VLAN is a port-specific configuration and is changed with the interface command switchport trunk native vlan vlan-id.

Network Device Communication Allowed VLANS

•The interface command **switchport trunk allowed vlan** *vlan-ids* specifies the VLANs that are allowed to traverse the link. Example 1-7 displays sample a configuration for limiting the VLANs that can cross the Gi1/0/2 trunk port for VLANs 1, 10, 20, and 99.

Example 1-7 Viewing the VLANs That Are Allowed on a Trunk Link

SW1# show run interface gi1/0/1
interface GigabitEthernet1/0/1
switchport trunk allowed vlan 1,10,20,99
switchport mode trunk

- The full command syntax **switchport trunk allowed** {*vlan-ids* | **all** | **none** | **add** vlan-ids | **remove** *vlan-ids* | **except** *vlan-ids*} provides a lot of power in a single command.
- The optional keyword **all** allows for all VLANs, while **none** removes all VLANs from the trunk link.
- The **add** keyword adds additional VLANs to those already listed, and the **remove** keyword removes the specified VLAN from the VLANs already identified for that trunk link.

Network Device Communication MAC Address Table

•The MAC address table is responsible for identifying the switch ports and VLANs with which a device is associated. A switch builds the MAC address table by examining the source MAC address for the traffic that it receives. This information is then maintained to shrink the collision domain (point-to-point communication between devices and switches) by reducing the amount of unknown unicast flooding.

•The MAC address table is displayed with the command **show mac address-table** [address mac-address | dynamic | vlan vlan-id]. The optional keywords with this command provide the following benefits:

- address mac-address Displays entries that match the explicit MAC address. This command could be beneficial on switches with hundreds of ports.
- dynamic Displays entries that are dynamically learned and are not statically set or burned in on the switch.
- **vlan** *vlan-id* Displays entries that matches the specified VLAN.

Network Device Communication MAC Address Table (Cont.)

- The command mac address-table static mac-address vlan vlan-id {drop | interface interface-id} adds a manual entry with the ability to associate it to a specific switch port or to drop traffic upon receipt.
- The command clear mac address-table dynamic [{address mac-address | interface interface-id | vlan vlan-id}] flushes the MAC address table for the entire switch.
- The MAC address table resides in content addressable memory (CAM). The CAM uses high-speed memory that is faster than typical computer RAM due to its search techniques. The CAM table provides a binary result for any query of 0 for true or 1 for false.

Example 1-8 Viewing the MAC Address Table

SW1# show mac address-table dynamic								
	Mac Address Table							
Vlan	Mac Address							
	0081.c4ff.8b01							
1	189c.5d11.9981	DYNAMIC	Gi1/0/3					
1	189c.5d11.99c7	DYNAMIC	Gi1/0/3					
1	7070.8bcf.f828	DYNAMIC	Gi1/0/17					
1	70df.2f22.b882	DYNAMIC	Gi1/0/2					
1	70df.2f22.b883	DYNAMIC	Gi1/0/3					
1	bc67.1c5c.9304	DYNAMIC	Gi1/0/2					
1	bc67.1c5c.9347	DYNAMIC	Gi1/0/3					
99	189c.5d11.9981	DYNAMIC	Gi1/0/3					
99	7069.5ad4.c228	DYNAMIC	Gi1/0/15					
10	0087.31ba.3980	DYNAMIC	Gi1/0/9					
10	0087.31ba.3981	DYNAMIC	Gi1/0/9					
10	189c.5d11.9981	DYNAMIC	Gi1/0/3					
10	3462.8800.6921	DYNAMIC	Gi1/0/8					
10	5067.ae2f.6480	DYNAMIC	Gi1/0/7					
10	7069.5ad4.c220	DYNAMIC	Gi1/0/13					
10	e8ed.f3aa.7b98	DYNAMIC	Gi1/0/12					
20	189c.5d11.9981	DYNAMIC	Gi1/0/3					
20	7069.5ad4.c221	DYNAMIC	Gi1/0/14					
Total	Mac Addresses for	this criter	ion: 19					

Network Device Communication Switch Port Status

 Examining the configuration for a switch port can be useful; however, some commands stored elsewhere in the configuration preempt the configuration set on the interface.

• The command **show interfaces** *interface-id* **switchport** provides all the relevant information for a switch port's status.

 The command show interfaces switchport displays the same information for all ports on the switch.

Example 1-9 Viewing the Switch Port Status

SW1# show interfaces gi1/0/5 switchport Name: Gi1/0/5
Name: G11/0/3
! The following line indicates if the port is shut or no shut
Switchport: Enabled
Administrative Mode: dynamic auto
! The following line indicates if the port is acting as static access port, trunk
! port, or if is down due to carrier detection (i.e. link down)
Operational Mode: down
Administrative Trunking Encapsulation: dotlq
Negotiation of Trunking: On
! The following line displays the VLAN assigned to the access port
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)

Administrative Native VLAN tagging: enabled Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dotlq Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: none Operational private-vlan: none Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL

Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Appliance trust: none

Network Device Communication Interface Status

•The command **show interface status** is another useful command for viewing the status of switch ports in a very condensed and simplified manner.

- **Port** Displays the interface ID or port channel.
- **Name** Displays the configured interface description.
- **Status** Displays connected for links where a connection was detected and established to bring up the link. Displays not connect for when a link is not detected and err-disabled when an error has been detected and the switch has disabled the ability to forward traffic out of that port.

SW1 # show	interface statu	8				
Port	Name	Status	Vlan	Duplex	Speed	Туре
Gi1/0/1		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/2	SW-2 Gi1/0/1	connected	trunk	a-full	a-1000	10/100/1000BaseTX
Gi1/0/3	SW-3 Gi1/0/1	connected	trunk	a-full	a-1000	10/100/1000BaseTX
Gi1/0/4		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/5		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/6		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/7	Cube13.C	connected	10	a-full	a-1000	10/100/1000BaseTX
Gi1/0/8	Cube11.F	connected	10	a-full	a-1000	10/100/1000BaseTX
Gi1/0/9	Cube10.A	connected	10	a-full	a-100	10/100/1000BaseTX
Gi1/0/10		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/11		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/12	Cube14.D Phone	connected	10	a-full	a-1000	10/100/1000BaseTX
Gi1/0/13	R1-G0/0/0	connected	10	a-full	a-1000	10/100/1000BaseTX
Gi1/0/14	R2-G0/0/1	connected	20	a-full	a-1000	10/100/1000BaseTX
Gi1/0/15	R3-G0/1/0	connected	99	a-full	a-1000	10/100/1000BaseTX
Gi1/0/16	R4-G0/1/1	connected	99	a-full	a-1000	10/100/1000BaseTX
Gi1/0/17		connected	1	a-full	a-1000	10/100/1000BaseTX
Gi1/0/18		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/19		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/20		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/21		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/22		notconnect	1	auto	auto	10/100/1000BaseTX
Gi1/0/23		notconnect	routed	auto	auto	10/100/1000BaseTX
Gi1/0/24		disabled	4011	auto	auto	10/100/1000BaseTX
Te1/1/1		notconnect	1	full	10G	SFP-10GBase-SR
Te1/1/2		notconnect	1	auto	auto	unknown

Example 1-10 Viewing Overall Interface Status

Network Device Communication Interface Status (Cont.)

- VLAN Displays the VLAN number assigned for access ports. Trunk links appear as trunk, and ports configured as Layer 3 interfaces display routed.
- Duplex Displays the duplex of the port. If the duplex auto-negotiated, it is prefixed by a-.
- **Speed** Displays the speed of the port. If the port speed was auto-negotiated, it is prefixed by a-.
- **Type** Displays the type of interface for the switch port. If it is a fixed RJ-45 copper port, it includes TX in the description (for example, 10/100/1000BASE-TX). Small form-factor pluggable (SFP)–based ports are listed with the SFP model if there is a driver for it in the software; otherwise, it says unknown.

Example 1-10 Viewing Overall Interface Status

SW1# show	interface status					
Port	Name	Status	Vlan	Duplex	Speed	Type
Gi1/0/1		notconnect	1	auto	auto	10/100/1000Base1
Gi1/0/2	SW-2 Gi1/0/1	connected	trunk	a-full	a-1000	10/100/1000Base1
Gi1/0/3	SW-3 Gi1/0/1	connected	trunk	a-full	a-1000	10/100/1000Base
Gi1/0/4		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/5		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/6		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/7	Cube13.C	connected	10	a-full	a-1000	10/100/1000Base
Gi1/0/8	Cube11.F	connected	10	a-full	a-1000	10/100/1000Base
Gi1/0/9	Cube10.A	connected	10	a-full	a-100	10/100/1000Base
Gi1/0/10		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/11		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/12	Cube14.D Phone	connected	10	a-full	a-1000	10/100/1000Base
Gi1/0/13	R1-G0/0/0	connected	10	a-full	a-1000	10/100/1000Base
Gi1/0/14	R2-G0/0/1	connected	20	a-full	a-1000	10/100/1000Base
Gi1/0/15	R3-G0/1/0	connected	99	a-full	a-1000	10/100/1000Base
Gi1/0/16	R4-G0/1/1	connected	99	a-full	a-1000	10/100/1000Base
Gi1/0/17		connected	1	a-full	a-1000	10/100/1000Base
Gi1/0/18		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/19		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/20		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/21		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/22		notconnect	1	auto	auto	10/100/1000Base
Gi1/0/23		notconnect	routed	auto	auto	10/100/1000Base
Gi1/0/24		disabled	4011	auto	auto	10/100/1000Base
Te1/1/1		notconnect	1	full	10G	SFP-10GBase-SR
Te1/1/2		notconnect	1	auto	auto	unknown

Network Device Communication Layer 3 Forwarding and Local Network Forwarding

Some of the Layer 3 forwarding logic occurs before Layer 2 forwarding. There are two main methodologies for Layer 3 forwarding:

- Forwarding traffic to devices on the same subnet
- Forwarding traffic to devices on a different subnet
- Local Network forwarding
- Two devices that reside on the same subnet communicate locally. As the data is encapsulated with its IP address, the device detects that the destination is on the same network. However, the device still needs to encapsulate the Layer 2 information to the packet. It knows its own MAC address but does not initially know the destination's MAC address.
- The Address Resolution Protocol (ARP) table provides a method of mapping Layer 3 IP addresses to Layer 2 MAC addresses by storing the IP address of a host and its corresponding MAC address.
- The ARP table can be viewed with the command **show ip arp** [*mac-address* | *ip-address* | **vlan** *vlan-id* | *interface-id*]. The optional keywords make it possible to filter the information.

Network Device Communication Packet Routing

Packets must be routed when two devices are on different networks. As the data is encapsulated with its IP address, a device detects that its destination is on a different network and must be routed. The device checks its local routing table to identify its next-hop IP address, which may be learned in one of several ways:

- From a static route entry, it can get the destination network, subnet mask, and next-hop IP address.
- A default-gateway is a simplified static default route that just asks for the local next-hop IP address for all network traffic.
- Routes can be learned from routing protocols.

Network Device Communication Packet Routing (Cont.)

- The source device must add the appropriate Layer 2 headers (source and destination MAC addresses), but the destination MAC address is needed for the next-hop IP address.
 - The device looks for the next-hop IP addresses entry in the ARP table and uses the MAC address from the next-hop IP address's entry as the destination MAC address.
 - The next step is to send the data packet forwarding.
- The next router receives the packet based on the destination MAC address
 - It analyzes the destination IP address
 - Locates the appropriate network entry in its routing table
 - Identifies the outbound interface
 - Then finds the MAC address for the destination device (or the MAC address for the next-hop address if it needs to be routed further)

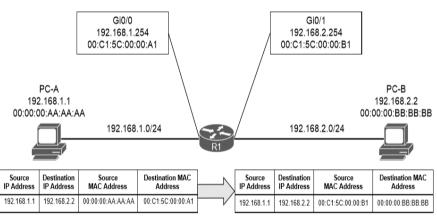


Figure 1-5 Layer 2 Addressing Rewrite

Network Device Communication IP Address Assignment

•Technologies and mechanisms have been created to allow IPv4 and IPv6 networks to communicate with each other. With either version, an IP address must be assigned to an interface for a router or multilayer switch to route packets.

- An interface with a configured IP address and that is in an up state injects the associated network into the router's routing table (Routing Information Base [RIB]).
- Connected networks or routes have an administrative distance (AD) of zero.
- It is possible to attach multiple IPv4 networks to the same interface by attaching a secondary IPv4 address to the same interface with the command **ip address** *ip-address subnet-mask* **secondary**.
- IPv6 addresses are assigned with the interface configuration command ipv6 address ipv6address/prefix-length.

xample 1-11	Assigning IP Addresses to Routed Interfaces	
-------------	---	--

R1‡ configure terminal
Enter configuration commands, one per line. End with $CNTL/Z$.
R1(config)# interface gi0/0/0
R1(config-if) # ip address 10.10.10.254 255.255
R1(config-if) # ip address 172.16.10.254 255.255.255.0 secondary
R1(config-if) # ipv6 address 2001:db8:10:::254/64
R1(config-if) # ipv6 address 2001:DB8:10:172::254/64
<pre>R1(config-if) # interface gi0/0/1</pre>
R1(config-if) # ip address 10.20.20.254 255.255.255.0
R1(config-if) # ip address 172.16.20.254 255.255.255.0 secondary
R1(config-if)# ipv6 address 2001:db8:20::254/64
R1(config-if)# ipv6 address 2001:db8:20:172::254/64

Network Device Communication Routed Subinterfaces

It is possible to configuring the switch's interface as a trunk port and creating logical subinterfaces on a router. A subinterface is created by appending a period and a numeric value after the period. Then the VLAN needs to be associated with the subinterface with the command **encapsulation dot1q** *vlan-id*.

Example 1-12	Configuring Routed Subinterfaces
--------------	----------------------------------

R2# configure terminal					
Enter configuration commands, one per line. End with CNTL/Z.					
R2(config-if)# int g0/0/1.10					
R2(config-subif)# encapsulation dotlQ 10					
R2(config-subif)# ip address 10.10.10.2 255.255.255.0					
R2(config-subif)# ipv6 address 2001:db8:10::2/64					
R2(config-subif)# int g0/0/1.99					
R2(config-subif)# encapsulation dotlQ 99					
R2(config-subif)# ip address 10.20.20.2 255.255.255.0					
R2(config-subif)# ipv6 address 2001:db8:20::2/64					

Network Device Communication Switched Virtual Interfaces

- With Catalyst switches it is possible to assign an IP address to a switched virtual interface (SVI), also known as a VLAN interface.
- An SVI is configured by defining the VLAN on the switch and then defining the VLAN interface with the command **interface vlan** *vlan-id*.
- The switch must have an interface associated to that VLAN in an up state for the SVI to be in an up state. If the switch is a multilayer switch, the SVIs can be used for routing packets between VLANs without the need of an external router.

Example 1-13 Creating a Switched Virtual Interface (SVI)

```
SW1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)# interface Vlan 10
SW1(config-if)# ip address 10.10.10.1 255.255.255.0
SW1(config-if)# ipv6 address 2001:db8:10::1/64
SW1(config-if)# no shutdown
SW1(config-if)# interface vlan 99
SW1(config-if)# ip address 10.99.99.1 255.255.255.0
SW1(config-if)# ipv6 address 2001:db8:99::1/64
SW1(config-if)# no shutdown
```

Network Device Communication Routed Switchports

•Some network designs include a point-to-point link between switches for routing. For example, when a switch needs to connect to a router, some would build a transit VLAN (for example, VLAN 2001), associate the port connecting to the router to VLAN 2001, and then build an SVI for VLAN 2001. There is always the potential that VLAN 2001 could exist elsewhere in the Layer 2 realm or that spanning tree could impact the topology.

Instead, the multilayer switch port can be converted from a Layer 2 switch port to a routed switch port with the interface configuration command **no switchport**. Then the IP address can be assigned to it.

SW1# configure terminal
Enter configuration commands, one per line. End with $\ensuremath{\texttt{CNTL}/\texttt{Z}}$.
SW1(config)# int gi1/0/14
SW1(config-if)# no switchport
SW1(config-if)# ip address 10.20.20.1 255.255.255.0
SW1(config-if)# ipv6 address 2001:db8:20::1/64
SW1(config-if)# no shutdown

Network Device Communication Verification of IP Addresses

•IPv4 addresses can be viewed with the command **show ip interface [brief** | *interface-id* | **vlan** *vlan-id*].

- This command's output contains:
- MTU, DHCP relay, ACLs, and the primary IP address.

SW1# show ip interface	brief exclude	unassigned	
Interface	IP-Address	OK? Method Status	Protocol
Vlan10	10.10.10.1	YES manual up	up
Vlan99	10.99.99.1	YES manual up	up
GigabitEthernet1/0/14	10.20.20.1	YES manual up	up
GigabitEthernet1/0/23	192.168.1.1	YES manual down	down

	SW1# show ip interface	brief				
	Interface	IP-Address	OK?	Method	Status	Protocol
	Vlan1	unassigned	YES	manual	up	up
	Vlan10	10.10.10.1	YES	manual	up	up
	Vlan99	10.99.99.1	YES	manual	up	up
	GigabitEthernet0/0	unassigned	YES	unset	down	down
	GigabitEthernet1/0/1	unassigned	YES	unset	down	down
	GigabitEthernet1/0/2	unassigned	YES	unset	up	up
	GigabitEthernet1/0/3	unassigned	YES	unset	up	up
	GigabitEthernet1/0/4	unassigned	YES	unset	down	down
	GigabitEthernet1/0/5	unassigned	YES	unset	down	down
	GigabitEthernet1/0/6	unassigned	YES	unset	down	down
,	GigabitEthernet1/0/7	unassigned	YES	unset	up	up
	GigabitEthernet1/0/8	unassigned	YES	unset	up	up
	GigabitEthernet1/0/9	unassigned	YES	unset	up	up
	GigabitEthernet1/0/10	unassigned	YES	unset	down	down
	GigabitEthernet1/0/11	unassigned	YES	unset	down	down
	GigabitEthernet1/0/12	unassigned	YES	unset	down	down
	GigabitEthernet1/0/13	unassigned	YES	unset	up	up
	GigabitEthernet1/0/14	10.20.20.1	YES	manual	up	up
	GigabitEthernet1/0/15	unassigned	YES	unset	up	up
	GigabitEthernet1/0/16	unassigned	YES	unset	up	up
	GigabitEthernet1/0/17	unassigned	YES	unset	down	down

Network Device Communication Verification of IP Addresses (Contd.)

•The same information can be viewed for IPv6 addresses with the command **show ipv6 interface [brief** | *interface-id* | **vlan** *vlan-id*].

•Just as with IPv4 addresses, a CLI parser can be used to reduce the information to what is relevant, as demonstrated in Example 1-16.

Example 1-16 Viewing Device IPv6 Addresses

SW1	# show ipv6 interfa	ce brief
! 0	utput omitted for k	previty
Vla	n1	[up/up]
	FE80::262:ECFF:FE9	D:C547
	2001:1::1	
Vla	n10	[up/up]
	FE80::262:ECFF:FE9	D:C546
	2001:DB8:10::1	
Vla	n99	[up/up]
	FE80::262:ECFF:FE9	
	2001:DB8:99::1	
Gia	abitEthernet0/0	[down/down]
org	unassigned	[
Gia	-	[down/down]
org	unassigned	[down, down]
Gia	abitEthernet1/0/2	[up/up]
GIG	unassigned	[մբ/մբ]
cia	abitEthernet1/0/3	[up/up]
GIG	unassigned	[սք/սք]
<i>ai</i>	-	[]]
Gig	abitEthernet1/0/4	[down/down]
	unassigned	
Gig	abitEthernet1/0/5	[down/down]
	Unassigned	

SW1# show ig	pv6 interface brief	exclude unassigned GigabitEthernet
Vlan1	[up/up]	
FE80::20	62:ECFF:FE9D:C547	
2001:1:	:1	
Vlan10	[up/up]	
FE80::20	62:ECFF:FE9D:C546	
2001:DB8	3:10::1	
Vlan99	[up/up]	
FE80::262:ECFF:FE9D:C55D		
2001:DB8	3:99::1	

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 1

Description

Collision Domain

Virtual LANs (VLANs)

Access Ports

Trunk Ports

Content Addressable Memory

Address Resolution Protocol (ARP)

Packet Routing

Prepare for the Exam Key Topics for Chapter 1 (Cont.)

Description

IP Address Assignment

Process Switching

Cisco Express Forwarding (CEF)

Ternary Content Addressable Memory

Software CEF

SDM Template

Prepare for the Exam Key Terms for Chapter 1

Key Terms	
Access port	Forwarding Information Base (FIB)
Address Resolution Protocol (ARP)	MAC address table
Broadcast Domain	native VLAN
Cisco Express Forwarding (CEF)	process switching
collision domain	Routing Information Base (RIB)
content addressable memory (CAM)	trunk port
Layer 2 forwarding	ternary content addressable memory (TCAM)
Layer 3 forwarding	virtual LAN (VLAN)

Prepare for the Exam Command Reference for Chapter 1

Task	Command Syntax
Define a VLAN	vlan vlan-id name vlanname
Configure and interface as a trunk port	switchport mode trunk
Configure an interface as an access port assigned to a specific VLAN	<pre>switchport mode access switchport access {vlan vlan-id name name}</pre>
Configure a static MAC address entry	mac address-table static mac-address vlan vlan-id interface interface-id
Clear MAC addresses from the MAC address table	clear mac address-table dynamic [{address mac-address interface interface- id vlan vlan-id}]

Prepare for the Exam Command Reference for Chapter 1 (Cont.)

Task	Command Syntax
Assign an IPv4 address to an interface	ip address ip-address subnet-mask
Assign a secondary IPv4 address to an interface	ip address ip-address subnet-mask secondary
Assign an IPv6 address to an interface	ipv6 address ipv6-address/prefix-length
Modify the SDM database	sdm prefer {vlan advanced}
Display the interfaces that are configured as a trunk port and all the VLANs that they permit	show interfaces trunk

Prepare for the Exam Command Reference for Chapter 1 (Cont.)

Task	Command Syntax
Display the list of VLANs and their associated ports	<pre>show vlan [{brief id vlan-id name vlanname summary}]</pre>
Display the MAC address table for a switch	<pre>show mac address-table [address mac-address dynamic vlan vlan-id]</pre>
Display the current interface state, including duplex, speed, and link state	show interfaces
Display the Layer 2 configuration information for a specific switchport	show interfaces interface-id switchport
Display the ARP table	show ip arp [<i>mac-address</i> <i>ip-address</i> vlan <i>vlan-id</i> <i>interface-id</i>].
Displays the IP interface table	show ip interface [brief interface-id vlan vlan-id]
Display the IPv6 interface table	show ipv6 interface [brief <i>interface-id</i> vlan <i>vlan-id</i>]

Thank you! Questions?

https://www.fit.vutbr.cz/research/groups/nes@fit

Chapter 2: Spanning Tree

CCNP Enterprise: Core Networking

Spanning Tree Protocol Fundamentals

- Spanning Tree Protocol (STP) enables switches to become aware of other switches through the advertisement and receipt of bridge protocol data units (BPDUs).
- STP operates by selecting a master switch and running a tree-based algorithm to identify which redundant ports should not forward traffic.

Spanning Tree Protocol Fundamentals Spanning Tree Versions

- STP has multiple iterations:
- 802.1D, which is the original specification
- Per-VLAN Spanning Tree (PVST)
- Per-VLAN Spanning Tree Plus (PVST+)
- 802.1W Rapid Spanning Tree Protocol (RSTP)
- 802.1S Multiple Spanning Tree Protocol (MST)
- **Note**: Catalyst switches now operate in PVST+, RSTP, and MST modes. All three of these modes are backward compatible with 802.1D.

Spanning Tree Protocol Fundamentals IEEE 802.1D STP Port States

Every port transitions through the following states:

Port States	Description
Disabled	The port is in an administratively off position (that is, shut down).
Blocking	The switch port is enabled, but the port is not forwarding any traffic.
Listening	The switch port has transitioned from a blocking state and can now send or receive only BPDUs.
Learning	The switch port can modify the MAC address table. The switch still does not forward any other network traffic besides BPDUs.
Forwarding	The switch port can forward all network traffic and can update the MAC address table as expected.
Broken	The switch has detected a problem on a port that can have major effects. The port discards packets as long as the problem continues to exist.

Spanning Tree Protocol Fundamentals 802.1D STP Port Types

The 802.1D STP standard defines the following three port types:

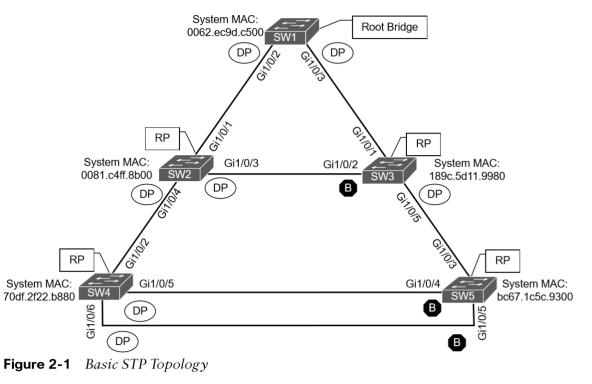
Port Types	Description
Root port (RP)	A network port that connects to the root bridge or an upstream switch in the spanning-tree topology. There should be only one root port per VLAN on a switch.
Designated port (DP)	A network port that receives and forwards BPDU frames to other switches. Designated ports provide connectivity to downstream devices and switches. There should be only one active designated port on a link.
Blocking port	A network that is not forwarding traffic because of STP calculations.

Spanning Tree Protocol Fundamentals STP Key Terminology

Terms	Description
Root Bridge	The most important switch. All ports are in a forwarding state and are categorized as designated ports.
Bridge protocol data unit (BPDU)	Used to identify a hierarchy and notify of changes in the topology There are two types of BPDUs: configuration BPDU and topology change notification BPDU.
Configuration BPDU	Used to identify the root bridge, root, designated, and blocking ports.
Topology change notification (TCN) BPDU	Used to communicate changes in the Layer 2 topology to other switches.
Root path cost	The combined cost for a specific path toward the root switch.

Spanning Tree Protocol Fundamentals STP Key Terminology (Cont.)

Terms	Description
System priority	This 4-bit value indicates the preference for a switch to be root bridge. The default value is 32,768.
System ID extension	This 12-bit value indicates the VLAN that the BPDU correlates.
Root bridge identifier	This is a combination of the root bridge system MAC address, system ID extension, and system priority of the root bridge.
Local bridge identifier	This is a combination of the local switch's bridge system MAC address, system ID extension, and system priority of the root bridge.
Max age	Maximum length of time that passes before a bridge port saves its BPDU information. The default value is 20 seconds.
Hello time	The time that a BPDU is advertised out of a port. The default value is 2 seconds, but the value can be configured to 1 to 10 seconds.
Forward delay	The amount of time that a port stays in a listening and learning state. The default value is 15 seconds.


Spanning Tree Protocol Fundamentals STP Path Cost

- The root path is found based on the cumulative interface STP cost to reach the root bridge.
- The interface STP cost was originally stored as a 16-bit value with a reference value of 20 Gbps.
- Another method, called *long* mode, uses a 32-bit value and uses a reference speed of 20 Tbps.
- The original method, known as *short mode*, is the default mode.

Link Speed	Short-Mode STP Cost	Long-Mode STP Cost
10 Mbps	100	2,000,000
100 Mbps	19	200,000
1 Gbps	4	20,000
10 Gbps	2	2,000
20 Gbps	1	1,000
100 Gbps	1	200
1 Tbps	1	20
10 Tbps	1	2

Spanning Tree Protocol Fundamentals Building the STP Topology

- This section focuses on the logic switches use to build an STP topology.
- The focus is on VLAN 1, but VLANs 10, 20, and 99 also exist.
- SW1 has been identified as the root bridge, and the RP, DP, and blocking ports have been identified.

Spanning Tree Protocol Fundamentals **Root Bridge Election**

The first step with STP is to identify the root bridge.

As a switch initializes, it assumes that it is the root bridge and uses the local bridge identifier as the root bridge identifier.

It then listens to its neighbor's configuration BPDU and does the following:

- If the neighbor's configuration BPDU is inferior to its own BPDU, the switch ignores that BPDU.
- If the neighbor's configuration BPDU is preferred to its own BPDU, the switch updates its BPDUs to include the new root bridge identifier along with a new root path cost that correlates to the total path cost to reach the new root bridge.
- This process continues until all switches in a topology have identified the root bridge switch.
- STP prefers lower priority number then goes to lower MAC address.

Spanning Tree Protocol Fundamentals STP Root Path Costs

- The advertised root path cost is always the value calculated on the local switch.
- The local root path cost is the advertised root path cost plus the local interface port cost.
- The root path cost is always zero on the root bridge.
- Figure 2-2 illustrates the root path cost as SW1 advertises the configuration BPDUs toward SW3 and then SW3's configuration BPDUs toward SW5.

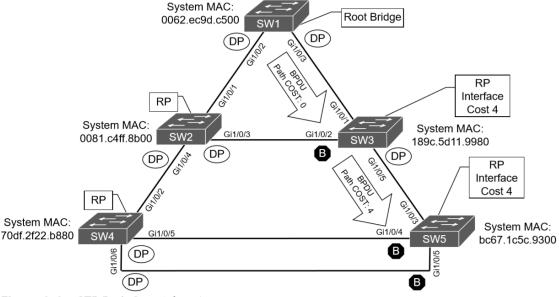


Figure 2-2 STP Path Cost Advertisements

Spanning Tree Protocol Fundamentals Locating Root Ports

Once the Root Bridge is found, the switch must determine its Root Port.

The RP is selected using the following logic:

- 1. The interface associated to lowest path cost is more preferred.
- 2. The interface associated to the lowest system priority of the advertising switch is preferred next.
- 3. The interface associated to the lowest system MAC address of the advertising switch is preferred next.
- 4. When multiple links are associated to the same switch, the lowest port priority from the advertising switch is preferred.
- 5. When multiple links are associated to the same switch, the lower port number from the advertising switch is preferred.

Spanning Tree Protocol Fundamentals Locating Root Ports Verified

Use the **show spanning-tree root** command to verify the Root ID and the Root Port.

Example 2-2 Identifying the Root Ports

SW2# show spann:	ing-tree	e root						
			Root		Hello	Max	Fwd	
Vlan		Root ID	Cost		Time	Age	Dly	Root Port
VLAN0001	32769	0062.ec9d.c500		4	2	20	15	Gi1/0/1
VLAN0010	32778	0062.ec9d.c500		4	2	20	15	Gi1/0/1
VLAN0020	32788	0062.ec9d.c500		4	2	20	15	Gi1/0/1
VLAN0099	32867	0062.ec9d.c500		4	2	20	15	Gi1/0/1
SW3# show spann:	ing-tree	e root						
SW3 # show spann :	ing-tree	e root	Root		Hello	Max	Fwd	
SW3# show spann : Vlan	ing-tree	Root ID	Root Cost		nexeo			Root Port
	ing-tree				nexeo			Root Port
					nexeo		Dly	Root Port Gil/0/1
Vlan	32769	Root ID		4	Time	Age	Dly 15	
Vlan VLAN0001	32769 32778	Root ID 0062.ec9d.c500		4 4	Time 2	Age 20	Dly 15 15	Gi1/0/1
Vlan VLAN0001 VLAN0010	32769 32778 32788	Root ID 0062.ec9d.c500 0062.ec9d.c500		4	Time 2 _2	Age 20 20	Dly 15 15	Gil/0/1 Gil/0/1

Example 2-3 Identifying the Root Ports on SW4 and SW5

SW4 # show spanni r								
			Root		Hello	Max	Fwd	
Vlan		Root ID	Cost		Time	Age	Dly	Root Port
VLAN0001	32769	0062.ec9d.c500		8	2	20	15	Gi1/0/2
VLAN0010	32778	0062.ec9d.c500		8	2	20	15	Gi1/0/2
VLAN0020	32788	0062.ec9d.c500		8	2	20	15	Gi1/0/2
	52700	0002.2090.0000		0	2	~ ~	10	011/0/2
VLAN0099		0062.ec9d.c500		-	2			G11/0/2
VLAN0099 SW5# show spannin	32867	0062.ec9d.c500		8	_	20	15	
	32867	0062.ec9d.c500	Root	8	2 Hello	20 Max	15 Fwd	
SW5# show spannin	32867	0062.ec9d.c500	Root	8	2 Hello	20 Max	15 Fwd	Gi1/0/2
SW5# show spannir Vlan	32867	0062.ec9d.c500	Root Cost	8	2 Hello	20 Max Age	15 Fwd Dly 	Gi1/0/2
SW5# show spannir Vlan 	32867 ng-tree 	0062.ec9d.c500 e root Root ID	Root Cost	8	2 Hello Time	20 Max Age	15 Fwd Dly 15	G11/0/2 Root Port
SW5# show spannin Vlan VLAN0001 VLAN0010	32867 ng-tree 32769 32778	0062.ec9d.c500 root Root ID 0062.ec9d.c500	Root Cost	8	2 Hello Time 2	20 Max Age 20	15 Fwd Dly 15 15	G11/0/2 Root Port G11/0/3

Spanning Tree Protocol Fundamentals Locating Blocked Designated Switch Ports

The RPs have been identified and all other ports are considered designated ports. If two non-root switches are connected to each other on their designated ports, one port must be set to a blocking state to prevent a forwarding loop. Calculate which ports should be blocked between two non-root switches:

- 1. The interface is a designated port and must not be considered an RP.
- 2. The switch with the lower path cost to the root bridge forwards, and the one with the higher path cost blocks. If they tie, they move on to the next step.
- 3. The system priority of the local switch is compared to the system priority of the remote switch. The local port is moved to a blocking state if the remote system priority is lower than that of the local switch. If they tie, they move on to the next step.
- 4. The system MAC address of the local switch is compared to the system priority of the remote switch. The local designated port is moved to a blocking state if the remote system MAC address is lower than that of the local switch. If the links are connected to the same switch, they move on to the next step.

Spanning Tree Protocol Fundamentals Viewing STP Information Example 2-4 Viewing

These port types are expected on Catalyst switches:

Point-to-point (P2P) - This port type connects with another network device (PC or RSTP switch).

P2P edge -This port type specifies that portfast is enabled on this port.

Example 2-4 Viewing SW1's STP Information

SW1# show spanning-	tree vlan 1		
UT ANOOO1			
VLAN0001			
Spanning tree ena	bled protocol rstp		
! This section disp	lays the relevant :	information for the STP root bridge	
Root ID Priori	ty 32769		
Addres	s 0062.ec9d.c5	00	
This b	oridge is the root		
Hello	Time 2 sec Max A	Age 20 sec Forward Delay 15 sec	
! This section disp	lays the relevant :	information for the Local STP bridge	
Bridge ID Priori	ty 32769 (prio	rity 32768 sys-id-ext 1)	
Addres	s 0062.ec9d.c5	00	
Hello	Time 2 sec Max 2	Age 20 sec Forward Delay 15 sec	
Aging	Time 300 sec		
Interface	Role Sts Cost	Prio.Nbr Type	
Gi1/0/2	Desg FWD 4	128.2 P2p	
Gi1/0/3	Desg FWD 4	128.3 P2p	
Gi1/0/14	Desg FWD 4	128.14 P2p Edge	

Spanning Tree Protocol Fundamentals Viewing STP Information

Verify Cost and Root Ports with the **show spanning-tree vlan 1** command. **Example 2-5** Verifying the Root and Blocking Ports for a VLAN

SW2# show sp	anning-tree	vlan 1
VLAN0001		
Spanning t	ree enabled p	protocol rstp
Root ID	Priority	32769
	Address	0062.ec9d.c500
	Cost	4
	Port	1 (GigabitEthernet1/0/1)
	Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID	Address	32769 (priority 32768 sys-id-ext 1) 0081.c4ff.8b00 2 sec Max Age 20 sec Forward Delay 15 sec 300 sec
		Sts Cost Prio.Nbr Type
Gi1/0/1	Root	FWD 4 128.1 P2p
Gi1/0/3	Desg	FWD 4 128.3 P2p
Gi1/0/4	Desg	FWD 4 128.4 P2p

Spanning Tree Protocol Fundamentals Verify VLAN Information on a Trunk

If a VLAN is missing on a trunk port, check the trunk port configuration for accuracy.

SW3# show spanning-	tree interface gil/	0/1	
Vlan	Role Sts Cost	Prio.Nbr	Туре
VLAN0001	Root FWD 4	128.1	P2p
VLAN0010	Root FWD 4	128.1	P2p
VLAN0020	Root FWD 4	128.1	P2p
VLAN0099	Root FWD 4	128.1	P2p
CWD# about an and an		o la debedi	
SW3# show spanning-		0/1 detai.	1
! Output omitted fo	r brevity		
Port 1 (GigabitEth	ernet1/0/1) of VLAN	10001 is re	oot forwarding
Port path cost 4	, Port priority 128	, Port Ide	entifier 128.1.
Designated root	has priority 32769,	address (0062.ec9d.c500
Designated bridg	e has priority 3276	9, address	s 0062.ec9d.c500
Designated port	id is 128.3, design	ated path	cost 0
Timers: message	age 16, forward del	ay 0, hold	10
Number of transi	tions to forwarding	state: 1	
Link type is poi	nt-to-point by defa	ult	

Spanning Tree Protocol Fundamentals STP Topology Changes

BPDUs always flow from the root bridge toward the edge switches, unless there are changes in the topology.

- The switch that detects a link status change sends a topology change notification (TCN) BPDU toward the root bridge out of its RP.
- If an upstream switch receives the TCN, it sends out an acknowledgment and forwards the TCN out its RP to the root bridge.
- Upon receipt of the TCN, the root bridge creates a new configuration BPDU with the Topology Change flag set, and it is then flooded to all the switches.
- When switches receive this, they set their MAC address timer to a default 15 seconds. Then the device flushes its MAC table if has not heard from a device in that last 15 seconds.
- TCNs are generated on a VLAN basis, so the impact of TCNs directly correlates to the number of hosts in a VLAN.

Spanning Tree Protocol Fundamentals Verify STP Topology Changes

Use the **show spanning-tree vlan # detail** command to see topology changes.

Example 2-7 Viewing a Detailed Version of Spanning Tree State

```
SW1# show spanning-tree vlan 10 detail
VLAN0010 is executing the rstp compatible Spanning Tree protocol
 Bridge Identifier has priority 32768, sysid 10, address 0062.ec9d.c500
 Configured hello time 2, max age 20, forward delay 15, transmit hold-count 6
 We are the root of the spanning tree
 Topology change flag not set, detected flag not set
 Number of topology changes 42 last change occurred 01:02:09 ago
          from GigabitEthernet1/0/2
 Times: hold 1, topology change 35, notification 2
         hello 2, max age 20, forward delay 15
 Timers: hello 0, topology change 0, notification 0, aging 300
```

Rapid Spanning Tree Protocol

- IEEE 802.1D has only one topology tree and a slower convergence which can be problematic.
- Rapid Spanning Tree Protocol (RSTP) IEEE 802.1W reduces the number of port states to be faster and more efficient.

Rapid Spanning Tree Protocol Rapid Spanning Tree Port States

IEEE 802.1D has only one topology tree which can be problematic. Larger environments with multiple VLANs need different STP topologies for traffic engineering purposes.

- Cisco created the proprietary Per-VLAN Spanning Tree (PVST) and Per-VLAN Spanning Tree Plus (PVST+)
- Rapid Spanning Tree Protocol (RSTP) IEEE 802.1W reduces the number of port states to three:

Port States	Description
Discarding	The switch port is enabled, but the port is not forwarding any traffic to ensure that a loop is not created.
Learning	The switch port modifies the MAC address table. The switch still does not forward any other network traffic besides BPDUs.
Forwarding	The switch port forwards all network traffic and updates the MAC address table as expected.

Rapid Spanning Tree Protocol Rapid Spanning Tree Port Roles

RSTP defines the following port roles:

Port Roles	Description
Root port (RP):	A network port that connects to the root bridge or an upstream switch in the spanning-tree topology. There should be only one root port per VLAN.
Designated port (DP):	A network port that receives and forwards BPDU frames to other switches. Designated ports provide connectivity to downstream devices and switches. There should be only one active designated port on a link.
Alternate port:	A network port that provides alternate connectivity toward the root switch through a different switch.
Backup port:	A network port that provides link redundancy toward the current root switch. A backup port exists only when multiple links connect between the same switches.

Rapid Spanning Tree Protocol Rapid Spanning Tree Port Types

RSTP defines three types of ports that are used for building the STP topology:

Port Roles	Description
Edge Port	A port at the edge of the network where hosts connect to the Layer 2 topology with one interface and cannot form a loop. These ports directly correlate to ports that have the STP portfast feature enabled.
Root port	A port that has the best path cost toward the root bridge. There can be only one root port on a switch.
Point-to-Point port	Any port that connects to another RSTP switch with full duplex. Full-duplex links do not permit more than two devices on a network segment, so determining whether a link is full duplex is the fastest way to check the feasibility of being connected to a switch.

Multi-access connections (Hubs) must use 802.1D.

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 2

Description

802.1D port types

STP key terminology

Root bridge election

Locating root ports

STP topology changes

RSTP

RSTP (802.1W) port states

Building the RSTP topology

Prepare for the Exam Key Terms for Chapter 2

Term	
bridge protocol data unit (BPDU)	root bridge
configuration BPDU	root bridge identifier
hello time	root path
designated port (DP)	cost
forward delay	root port
local bridge identifier	system priority
Max Age	system ID extension
topology change notification (TCN)	

Prepare for the Exam Command Reference for Chapter 2

Task	Command Syntax		
Set the STP max age	spanning-tree vlan vlan-id max-age		
Set the STP hello interval	spanning-tree vlan vlan-id hello-time hello-time		
Set the STP forwarding delay	spanning-tree vlan vlan-id forward-time forward-time		
Display the STP root bridge and cost	show spanning-tree root		
Display the STP information (root bridge, local bridge, and interfaces) for one or more VLANs	show spanning-tree [vlan vlan-id]		
Identify when the last TCN occurred and which port was the reason for it.	show spanning-tree [vlan vlan-id] detail		

Thank you! Questions?

https://www.fit.vutbr.cz/research/groups/nes@fit

Chapter 3: Advanced STP Tuning Instructor Materials

CCNP Enterprise: Core Networking

STP Topology Tuning

- In a properly designed network a switch is deliberately selected to become the root bridge and the designated and alternate ports are modified.
- Network design considerations factor in hardware platform, resiliency, and network topology.

STP Topology Tuning Root Bridge Placement

- To ensure root bridge placement set the system priority on:
- The root bridge to the lowest value
- The secondary root bridge to a value slightly higher than that of the root bridge
- All other switches to a value higher than the secondary root bridge

Command	Description
spanning-tree vlan vlan-id priority priority	The priority is a value between 0 and 61,440, in increments of 4,096.
<pre>spanning-tree vlan vlan-id root {primary secondary} [diameter diameter]</pre>	The primary keyword sets the priority to 24,576, and the secondary keyword sets the priority to 28,672. The optional diameter command makes it possible to tune the Spanning Tree Protocol (STP) convergence and modifies the timers.

STP Topology Tuning Configuring the Root Bridge

- In the example:
- The initial priority for VLAN 1 on SW1 is verified, 32,769.
- SW1 is configured to be the primary root for VLAN 1
- The priority is verified again to ensure the change took place.

Example 3-1 Changing the STP System Priority on SW1

```
Verification of SWI Priority before modifying the priority
SWI# show spanning-tree vlan 1
VLAN0001
  Spanning tree enabled protocol rstp
  Root ID
            Priority
                        32769
                        0062.ec9d.c500
            Address
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
                        32769 (priority 32768 sys-id-ext 1)
  Bridge ID Priority
            Address
                        0062. ec9d. c500
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 300 sec
Configuring the SWI priority as primary root for VLAN 1
SWI(config)# spanning-tree vlan 1 root primary
Verification of SWI Priority after modifying the priority
SWI# show spanning-tree vlan 1
VLAN0001
  Spanning tree enabled protocol rstp
  Root ID
            Priority
                        24577
            Address
                        0062.ec9d.c500
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                        24577 (priority 24576 sys-id-ext 1)
            Address
                        0062.ec9d.c500
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 300 sec
Interface
                   Role Sts Cost
                                      Prio. Nor Type
Gi 1/0/2
                   Desg FWD 4
                                      128.2
                                               P2p
Gi 1/0/3
                   Desg FWD 4
                                      128.3
                                               P2p
Gi 1/0/14
                   Desg FWD 4
                                      128.14 P2p
```

STP Topology Tuning Configuring the Backup Root Bridge

- In the example:
- The initial priority for VLAN 1 on SW2 is verified, 32,769.
- SW2 is configured to be the secondary root for VLAN 1
- The priority is verified again to ensure the change took place.

Example 3-2 Changing the STP System Priority on SW2

! Verification of SW2 Priority before modifying the priority					
SW2# show spanning-tree vlan 1					
! Output omitted for brevity					
VLAN0001					
Spanning tree enabled protocol rstp					
Root ID	Priority	24577			
	Address	0062.ec9d.c500			
	Cost	4			
	Port	1 (GigabitEthernet1/0/1)			
	Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec			
Bridge ID	-	32769 (priority 32768 sys-id-ext 1)			
		0081.c4ff.8b00			
		2 sec Max Age 20 sec Forward Delay 15 sec			
	Aging Time	300 sec			
_					
		Sts Cost Prio.Nbr Type			
		FWD 4 128.1 P2p			
		FWD 4 128.3 P2p			
Gi1/0/4	-	FWD 4 128.4 P2p			
511, 0, 1	2009				
! Configurin	g the SW2 pr:	iority as root secondary for VLAN 1			
-		ee vlan 1 root secondary			
· ····					

STP Topology Tuning Modifying STP Root Port & Blocked Switch Port Locations

- Calculating total path cost to the root bridge:
- SW1 sends a BPDU to SW3 with the path cost of 0.
- SW3 receives the BPDU and adds its root port cost (4) to cost from the BPDU (0), resulting in the cost of 4.
- SW3 sends a BPDU to SW5 with the path cost of 4.
- SW5 receives the BPDU and adds its root port cost (4) to the cost from the BPDU (4), resulting in the cost of 8 for SW5 to reach the root bridge.

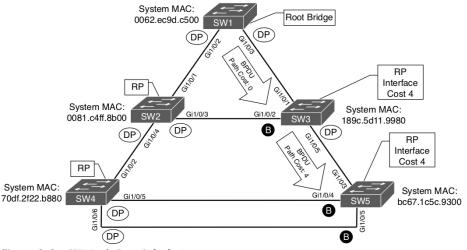


Figure 3-2 STP Path Cost Calculation

STP Topology Tuning Verifying the Total Path Cost

The example highlights the total path cost to the root bridge from SW3 and SW5.

Example 3-3 Verifying the Total Path Cost

SW# show spanning-tree vlan 1					
! Output omitted for brevity					
VLAN0001					
Root ID	Priority	32769			
	Address	0062.ec9d.c500			
	This bridge	is the root			
Interface	Ro1 e	Sts Cost	Prio.Nbr	Туре	
Gi 1/0/2	De s g	FWD 4	128.2	P2p	
Gi 1/0/3	Desg	FWD 4	128.3	P2p	
SW3# show sp	panning-tree	vlan 1			
SW8# show sp	0	vlan 1			
SW8# show sp ! Output omi	panning-tree	vlan 1 vity		T	
SW8# show sp ! Output om VLAN0001	panning-tree itted for bre Priority	vlan 1 vity	0	T	
SW8# show sp ! Output om VLAN0001	panning-tree itted for bre Priority	vlan 1 vity 32769	D		
SW3# show sp ! Output om VLAN0001	panning-tree itted for bre Priority Address	vlan 1 vity 32769 0062.ec9d.c50			
SW8# show sp ! Output om VLAN0001	panning-tree itted for brev Priority Address Cost	vlan 1 vity 32769 0062.ec9d.c500 4			
SW8# show sp ! Output omi VLAN0001 Root ID	panning-tree itted for brev Priority Address Cost Port	vlan 1 vity 32769 0062.ec9d.c500 4	ernet 1/ 0/	1)	
SW8# show sp ! Output omi VLAN0001 Root ID	panning-tree itted for brev Priority Address Cost Port	vlan 1 vity 32769 0062.ec9d.c50 4 1 (GigabitEth Sts Cost	ernet 1/0/ Prio.Nor	1) Type	
SW8# show sp ! Output omi VLAN0001 Root ID	panning-tree itted for brev Priority Address Cost Port Role	vlan 1 vity 32769 0062.ec9d.c50 4 1 (GigabitEth Sts Cost	ernet 1/0/ Prio.Nbr	1) Type	
SW# show sp 1 Output om VLAN0001 Root ID Interface	panning-tree v itted for brev Priority Address Cost Port Role Root	vlan 1 vity 32769 0062.ec9d.c50 4 1 (GigabitEth Sts Cost	ernet 1/0/ Prio.Nbr 128.1	1) Type	

SW5# show spanning-tree vlan 1					
! Output omitted for brevity					
VLAN0001					
Root ID	Priority	y 32769			
	Address	0062.ec9d.c500			
	Cost	8			
	Por t	3 (Gigabit Ethe	ernet 1/0/2	3)	
Interface	Rol e	Sts Cost	Prio.Nbr	Туре	
Gi 1/0/3	Root	FWD 4 128.3 P2p			
Gi 1/0/4	Altn	BLK 4	BLK 4 128.4 P2p		
Gi 1/0/5	Altn	BLK 4	128.5	P2p	

Note: There is not a total path cost in SW1's output

STP Topology Tuning Modifying STP Port Cost

- The spanning tree [vlan vlan-id] cost cost command can be used to modify the STP forwarding path.
- Using the spanning tree command will modify the cost for all VLANs unless the optional vlan keyword is used.

Example 3-4 Modifying STP Port Cost

SW&# conf t SW&(config)# interface gi1/0/1</th></tr><tr><th colspan=5>SW8(config-if)# spanning-tree cost 1</th></tr><tr><th colspan=5>SW# show spanning-tree vlan 1</th></tr><tr><td>! Output omi</td><td colspan=6>! Output omitted for brevity</td></tr><tr><th>VLAN0001</th><th></th><th colspan=5></th></tr><tr><th>Root ID</th><th>Pri ority</th><th colspan=4>32769</th></tr><tr><th></th><th>Address</th><th>0062.ec9d.c500</th><th>)</th><th></th></tr><tr><th></th><th>Cos t</th><th>1</th><th></th><th></th></tr><tr><td></td><td>Por t</td><td>1 (Gigabit Ethe</td><td>ernet 1/0/</td><td>1)</td></tr><tr><td>Bridge ID</td><td>Priority</td><td>32769 (priori</td><td>ty 32768</td><td>everidrevt 1)</td></tr><tr><td>Bridge ID</td><td>Address</td><td>189c. 5d11. 9980</td><td></td><td>sys-10-0xt 1)</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Interface</td><td>Rol e</td><td>Sts Cost</td><td>Prio.Nbr</td><td>Туре</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Gi 1/0/1</td><td>Root</td><td>FWD 1</td><td>128.1</td><td>P2p</td></tr><tr><td>Gi 1/0/2</td><td>De s g</td><td>FWD 4</td><td>128.2</td><td>P2p</td></tr><tr><td>Gi 1/0/5</td><td>De s g</td><td>FWD 4</td><td>128.5</td><td>P2p</td></tr><tr><td>SW2# show sp</td><td>anning-tree</td><td>/lan 1</td><td></td><td></td></tr><tr><td>! Output omi</td><td>tted for brev</td><td>vity</td><td></td><td></td></tr><tr><td>VLAN0001</td><td></td><td></td><td></td><td></td></tr><tr><td>Root ID</td><td>Priority</td><td>32769</td><td></td><td></td></tr><tr><td></td><td>Addr es s</td><td>0062.ec9d.c500</td><td>)</td><td></td></tr><tr><td></td><td>Cos t</td><td>4</td><td></td><td></td></tr><tr><td></td><td colspan=4>Port 1 (Gi gabit Et her net 1/0/1)</td></tr><tr><td>Bridge ID</td><td>Priority</td><td>32769 (priori</td><td>tv 32768</td><td>sys-id-ext 1)</td></tr><tr><td></td><td>Address</td><td colspan=3>32769 (priority 32768 sys-id-ext 1) 0081.c4ff.8b00</td></tr><tr><td colspan=5>Address 0001.0411.8000</td></tr><tr><td>Interface</td><td>Ro1 e</td><td>Sts Cost</td><td>Prio.Nbr</td><td>Туре</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Gi 1/0/1</td><td>Root</td><td>FWD 4</td><td>128.1</td><td>P2p</td></tr><tr><td>Gi 1/0/3</td><td>Altn</td><td>BLK 4</td><td>128.3</td><td>P2p</td></tr><tr><td>Gi 1/0/4</td><td>De s g</td><td>FWD 4</td><td>128.4</td><td>P2p</td></tr></tbody></table>				
--	--	--	--	--

STP Topology Tuning Modifying STP Port Priority

•STP port priority influences which port becomes the alternate port when multiple links are used between switches. Use the command **spanning-tree** [**vlan** *vlan-id*] **port-priority** *priority* to change the STP port priority on a switch's interface.

Example 3-5 Viewing STP Port Priority

SW6# show spanning-tree vlan 1						
! Output omitted for brevity						

Example 3-6 Verifying Port Priority Impact on an STP Topology

SW# configure terminal Enter configuration commands, one per line. End with CNTL/Z. SW4(config)# interface gi1/0/6 SW4(config-if)# spanning-tree port-priority 64

Example 3-7 Determining the Impact of Port Priority on a Topology

SW4# show spanning-tree vlan 1				
! Output omitted fo	or brevity			
Interface	Role Sts Cost	Prio.Nbr	Туре	
Gi 1/0/2	Root FWD 4	128.2	P2p	
Gi 1/ 0/ 5	Desg FWD 4	128.5	P2p	
Gi 1/ 0/ 6	Desg FWD 4	64.6	P2p	
SW5# show spanning-	tree vlan 1			
! Output omitted fo	or brevity			
Interface	Role Sts Cost	Prio.Nbr	Туре	
Gi 1/0/4	Altn BLK 4	128.4	P2p	
Gi 1/0/5	Root FWD 4	128.5	P2p	

Additional STP Protection Mechanisms

- A network forwarding loop occurs when there are multiple active paths between two devices. Broadcast and multicast traffic are forwarded out every switch port continuing the forwarding loop.
- The network's throughput is drastically effected as the switches are processing numerous frames. The switches CPU utilization will be high and memory space will be consumed. The switches might crash and users will likely notice the impact on the network.

Additional STP Protection Mechanisms Additional STP Protection Mechanisms

Common issues for Layer 2 forwarding loops:

- STP is disabled on a switch.
- A load balancer is misconfigured and sends traffic out multiple ports with the same MAC address.
- A virtual switch that bridges two physical ports.
- End users using an unmanaged switch or hub.

Additional STP Protection Mechanisms Root Guard

- Root guard is an STP feature that prevents a configured port from becoming a root port.
- It does this by placing the port in an ErrDisabled state if a superior BDPU is received on that port.
- Root guard is placed on designated ports towards other switches that should never become root bridges.
- Root guard is enabled on a port-by-port basis.
- Use the interface command spanning-tree guard root to enable root guard.

Additional STP Protection Mechanisms STP Portfast

 STP portfast disables the topology notification notification (TCN) generation and causes access ports that come up to bypass the learning and listening states and enter the forwarding state immediately. If a BPDU is received on a portfast-enabled port, the portfast functionality is removed from that port.

Command	Description
spanning-tree portfast	Interface command to enable portfast on a specific access port
spanning-tree portfast default	Global command to enable portfast on all access ports
spanning-tree portfast disable	Disable portfast on a port
spanning-tree portfast trunk	Command used on trunk links to enable portfast *This command should only be used with ports connected to a single host.

Additional STP Protection Mechanisms STP Portfast Examples

The following shows how to enable STP portfast globally and on a specific interface.

SWI(config)# interfa SWI(config-if)# swit			1/0/13	
SWI(config-if)# swit			10	
SWI(config-if)# span	nni ng- t r e	e portfast		
SWI# show spanning-	tree vlan	10		
! Output omitted for	r brevity			
VLAN0010				
Interface	Role Sts	Cost	Prio.Nor	Туре
Gi 1/0/2	Desg FWD	4	128.2	P2p
Gi 1/0/3	Desg FWD	4	128.3	P2 p
Gi 1/0/13	Desg FWD	4	128.13	P2p Edge

Example 3-9 Enabling STP Portfast on Specific Interfaces

SW# show spanning-tree interface gi1/0/13 detail

Port 13 (GigabitEthernet1/0/13) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.7. Designated root has priority 32778, address 0062.ee9d.c500 Designated bridge has priority 32778, address 0062.ee9d.c500 Designated port id is 128.7, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 The port is in the portfast mode Link type is point-to-point by default

BPDU: sent 23103, received 0

Example 3-10 Enabling STP Portfast Globally

SW2# conf t

Enter configuration commands, one per line. End with CNTL/Z. SW2(config)# spanning-tree portfast default %Warning: this command enables portfast by default on all interfaces. You should now disable portfast explicitly on switched ports leading to hubs, switches and bridges as they may create temporary bridging loops.

SW2(config) # interface gi1/0/8 SW2(config-if) # spanning-tree portfast disable

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 3

Description

Root bridge placement

Root bridge values

Spanning tree port cost

Root guard

STP portfast

BPDU guard

BPDU filter

Prepare for the Exam Key Terms for Chapter 3

Terms
BPDU filter
Root guard
STP loop guard
BPDU guard
STP portfast
Unidirectional Link Detection (UDLD)

Prepare for the Exam Command Reference for Chapter 3

Task	Command Syntax
Configure the STP priority for a switch so that it is a root bridge or a backup root bridge	<pre>spanning-tree vlan vlan-id root {primary secondary} [diameter diameter] OR spanning-tree vlan vlan-id priority priority</pre>
Configure the STP port cost	spanning tree [vlan vlan-id] cost cost
Configure the STP port priority on the downstream port	spanning-tree [vlan vlan-id] port-priority priority
Enable root guard on an interface	spanning-tree guard root
Enable STP portfast globally, for a specific port, or for a trunk port	spanning-tree portfast default OR spanning-tree portfast OR spanning-tree portfast trunk
Enable BPDU guard globally or for a specific switch port	spanning-tree portfast bpduguard default OR spanning-tree bpduguard {enable disable}

Prepare for the Exam Command Reference for Chapter 3 (Cont.)

Task	Command Syntax
Enable BPDU guard globally or for a specific interface	spanning-tree portfast bpdufilter default OR spanning-tree bpdufilter enable
Enable STP loop guard globally or for a specific interface	spanning-tree loopguard default OR spanning-tree guard loop
Enable automatic error recovery for BPDU guard.	errdisable recovery cause bpduguard
Enable BPDU guard globally or for a specific interface	spanning-tree portfast bpdufilter default OR spanning-tree bpdufilter enable
Enable STP loop guard globally or for a specific interface	spanning-tree loopguard default OR spanning-tree guard loop
Enable automatic error recovery for BPDU guard.	errdisable recovery cause bpduguard

Prepare for the Exam Command Reference for Chapter 3 (Cont.)

Task	Command Syntax
Change the automatic error recovery time	errdisable recovery interval time-seconds
Enable UDLD globally or for a specific port	udld enable [aggressive] OR udld port [aggressive]
Display the list of STP ports in an inconsistent state	show spanning-tree inconsistentports
Display the list of neighbor devices running UDLD	show udld neighbors

Thank you! Questions?

https://www.fit.vutbr.cz/research/groups/nes@fit

Chapter 4: Multiple Spanning Tree Protocol

Instructor Materials

CCNP Enterprise: Core Networking

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 4

Description

Multiple Spanning Tree Protocol

MST instance

MST region

Internal Spanning Tree (IST)

MST region boundary

Prepare for the Exam Key Terms for Chapter 4

Terms

Common Spanning Tree (CST)

Internal spanning tree (IST)

MST instance (MSTI)

MST region

MST region boundary

PVST simulation check

Prepare for the Exam Command Reference for Chapter 4

Task	Command Syntax
Configure the switch for a basic MST region that includes all VLANS and the version number 1	spanning-tree mode mst spanning-tree mst configuration instance 0 vlan 1-4094 revision 1
Modify a switch's MSTI priority or make it the root bridge for the MSTI	spanning-tree mst instance-number priority priority OR spanning-tree mst instance-number root {primary secondary}[diameter diameter]
Specify additional VLANs to an MSTI	spanning-tree mst configuration instance instance-number vlan vlan-id
Change the MST version number	spanning-tree mst configuration revision version
Change the port cost for a specific MSTI	spanning-tree mst instance-number cost cost
Change the port priority for a specific MSTI	spanning-tree mst instance-number port- priority priority
Display the MST configuration	show spanning-tree mst configuration
Verify the MST switch status	show spanning-tree mst [instance-number]
View the STP topology for the MST	show spanning-tree mst interface interface-id

Thank you! Questions?

https://www.fit.vutbr.cz/research/groups/nes@fit

Chapter 5: VLAN Trunks and EtherChannel Bundles

Instructor Materials

CCNP Enterprise: Core Networking

VLAN Trunking Protocol

- Cisco created the proprietary protocol, VLAN Trunking Protocol (VTP), to reduce the burden of provisioning VLANs on switches.
- Switches that participate in the same VTP domain can have a VLAN created once on a VTP server and propagated to other VTP client switches in the same VTP domain.

VLAN Trunking Protocol The Roles of VTP

There are four roles in the VTP architecture:

VTP Roll	Description
Server	The server switch is responsible for the creation, modification, and deletion of VLANs within the VTP domain.
Client	The client switch receives VTP advertisements and modifies the VLANs on that switch. VLANs cannot be configured locally on a VTP client.
Transparent	VTP transparent switches receive and forward VTP advertisements but do not modify the local VLAN database. VLANs are configured only locally.
Off	A switch does not participate in VTP advertisements and does not forward them out of any ports either. VLANs are configured only locally.

VLAN Trunking Protocol The Versions of VTP

- There are three versions of VTP:
- Version 1 is default.
- Versions 1 and 2 have limited propagation to VLANs numbered 1 to 1005.
- VTP Version 3 allows for the full range of VLANs 1 to 4094.

•VTP supports having multiple VTP servers in a domain. These servers process updates from other VTP servers just as a client does.

If a VTP domain is Version 3, the primary VTP server must be set with the executive command **vtp primary.**

VLAN Trunking Protocol VTP Communication

VTP advertises updates by using a multicast address across the trunk links for advertising updates to all the switches in the VTP domain. The three main types of VTP advertisements:

Communication Types	Description
Summary	This advertisement occurs every 300 seconds or when a VLAN is added, removed, or changed. It includes the VTP version, domain, configuration revision number, and time stamp.
Subset	This advertisement occurs after a VLAN configuration change occurs. It contains all the relevant information for the switches to make changes to the VLANs on them.
Client Requests	This advertisement is a request by a client to receive the more detailed subset advertisement. This occurs when a switch with a lower revision number joins the VTP domain and observes a summary advertisement with a higher revision than it has stored locally.

VLAN Trunking Protocol VTP Configuration

The following are the steps for configuring VTP:

Terms	Description
Step 1	Define the VTP version with the command vtp version { 1 2 3 }.
Step 2	Define the VTP domain with the command vtp domain <i>domain-name</i> . Changing the VTP domain resets the local switch's version to 0.
Step 3	Define the VTP switch role with the command vtp mode { server client transparent none }
Step 4	(Optional) Secure the VTP domain with the command vtp password password (This step is optional but recommended because it helps prevent unauthorized switches from joining the VTP domain.)

VLAN Trunking Protocol VTP Configuration Example

 Example 5-1 demonstrates the VTP configuration on SW1, SW2, SW3, and SW6.

 The figure shows sample configurations for three of the VTP roles: SW1 as a client, SW3 as transparent, and the other switches as VTP clients.

Example 5-1 Configuring the VTP Domain

SW1(config)# vtp domain CiscoPress
Changing VTP domain name from CCNP to CiscoPress
SW1(config)# vtp version 3
09:08:11.965: %SW_VLAN-6-OLD_CONFIG_FILE_READ: Old version 2 VLAN configuration
file detected and read OK. Version 3 files will be written in the future.
09:08:12.085: %SW_VLAN-6-VTP_DOMAIN_NAME_CHG: VTP domain name changed to CISCO.
SW1(config)# vtp mode server
Setting device to VTP Server mode for VLANS.
SW1(config)# vtp password PASSWORD
Setting device VTP password to PASSWORD
SW1(config)# exit
SW1# vtp primary
This system is becoming primary server for feature vlan
No conflicting VTP3 devices found.
Do you want to continue? [confirm]
09:25:02.038: %SW_VLAN-4-VTP_PRIMARY_SERVER_CHG: 0062.ec9d.c500 has become the
primary server for the VLAN VTP feature
SW2(config) # vtp version 3
SW2(config)# vtp domain CISCO
SW2(config)# vtp mode client
SW2(config)# vtp password PASSWORD
Setting device VTP password to PASSWORD
SW3(config)# vtp version 3
SW3(config)# vtp domain CISCO
SW3(config)# vtp mode transparent
SW3(config)# vtp password PASSWORD

SW6(config)# vtp version 3

- SW6(config) # vtp domain CISCO
- SW6(config) # vtp mode client
- SW6(config) # vtp password PASSWORD

VLAN Trunking Protocol VTP Verification

- The VTP status is verified with the command show vtp status as shown in the example.
- The most important information displayed is the VTP version, VTP domain name, VTP mode, the number of VLANs (standard and extended), and the configuration version.

Example 5-2 Verifying VTP

SW1# show vtp status	
VTP Version capable	: 1 to 3
VTP version running	: 3
VTP Domain Name	: CISCO
VTP Pruning Mode	: Disabled
VTP Traps Generation	: Disabled
Device ID	: 0062.ec9d.c500
Feature VLAN:	
VTP Operating Mode	: Server
Number of existing VLANs	: 5
Number of existing extended VL	ANs : 0
Maximum VLANs supported locally	у : 4096
Configuration Revision	: 1
Primary ID	: 0062.ec9d.c500
Primary Description	: SW1
MD5 digest	: 0x9D 0xE3 0xCD 0x04 0x22 0x70 0xED 0x73
	0x96 0xDE 0x0B 0x7A 0x15 0x65 0xE2 0x65
! The following information is	used for other functions not covered in the Enterprise
! Core exam and are not direct:	ly relevant and will not be explained
Feature MST:	
VTP Operating Mode	: Transparent
Feature UNKNOWN:	
VTP Operating Mode	: Transparent
	on run Operating VLANS Revision
VTP version running	
	: Client
Configuration Revision	: 1
VTP Operating Mode	: Transparent

VLAN Trunking Protocol VTP Verification (Cont.)

It is very important that every switch that connects to a VTP domain has the VTP revision number reset to 0. Failing to reset the revision number on a switch could result in the switch providing an update to the VTP server.

This is not an issue if VI ANs are added but is catastrophic if VLANs are removed because those VLANs will be removed throughout the domain.

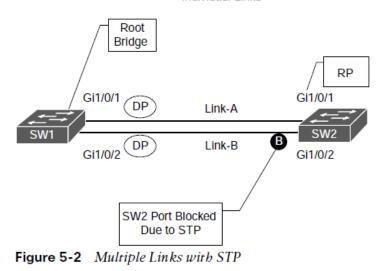
Example 5-3 Creating VLANs on the VTP Domain Server

SW1(config)# vlan 10	
SW1(config-vlan)# name	PCs
SW1(config-vlan)# vlan	20
SW1(config-vlan)# name	VoIP
SW1(config-vlan)# vlan	30
SW1(config-vlan)# name	Guest
Swi(config=vian/# name	04655
	i version run Operating VLANS Revision
SW1# show vtp status	i version run Operating VLANS Revision
SW1# show vtp status VTP version running	<pre>i version run Operating VLANS Revision : 3 : Primary Server</pre>
SW1# show vtp status VTP version running VTP Operating Mode	<pre>i version run Operating VLANS Revision : 3 : Primary Server</pre>

Blow Vian	
Name	Statu
default	activ

SW6# show vlan

VLAN Name	Status	Ports
1 default	active	Gil/0/1, Gil/0/2, Gil/0/4
		Gil/0/5, Gil/0/6, Gil/0/7
		Gil/0/8, Gil/0/9, Gil/0/10
		Gi1/0/11, Gi1/0/12, Gi1/0/13
		Gi1/0/14, Gi1/0/15, Gi1/0/16
		Gi1/0/17, Gi1/0/18, Gi1/0/19
		Gi1/0/20, Gi1/0/21, Gi1/0/22
		Gi1/0/23, Gi1/0/24
10 PCs	active	
20 VoIP	active	
30 Guest	active	
1002 fddi-default	act/unsup	
1003 trcrf-default	act/unsup	
1004 fddinet-default	act/unsup	
1005 trbrf-default	act/unsup	

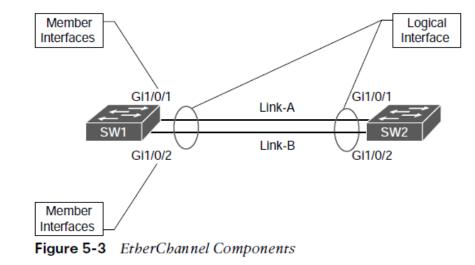

EtherChannel Bundle

- Ethernet network speeds are based on powers of 10 (10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 100 Gbps).
- When a link between switches becomes saturated, how can more bandwidth be added to that link to prevent packet loss?

EtherChannel Bundle Multiple Links

Ideally, it would be nice to plug in a second cable and double the bandwidth between the switches. However, Spanning Tree Protocol (STP) will place one of the ports into a blocking

state to prevent forwarding loops, as shown in Figure 5-2.



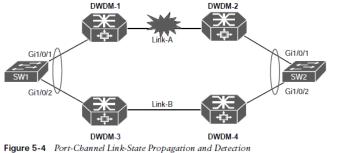
Individual Links

EtherChannel Bundle EtherChannel Components

Figure 5-3 shows some of the key components of an EtherChannel bundle between SW1 and SW2, with their Gi1/0/1 and Gi1/0/2 interfaces.

The physical links can be aggregated into a logical link called an EtherChannel bundle.

EtherChannel Bundle EtherChannel Components (Cont.)


Aspects of EtherChannel:

- Etherchannel is defined in the IEEE 802.3AD link aggregation specification.
- STP operates on a logical link and not on a physical link.
- The logical link will have the bandwidth of any active member interfaces.
- It will load balanced across all the links.
- EtherChannels can be used for either Layer 2 (access or trunk) or Layer 3 links.

The terms EtherChannel, EtherChannel bundle, and port channel are interchanged frequently on the Catalyst platform, but other Cisco platforms only use the term port channel exclusively.

EtherChannel Bundle EtherChannel Link-State

- EtherChannel may be created statically or dynamically.
- Static EtherChannel does not have a health integrity check. If the physical medium degrades and keeps the line protocol in an up state, the port channel will reflect that link as viable for transferring data.
- A common scenario involves the use of intermediary devices and technologies (for example, powered network taps, IPSs, Layer 2 firewalls, DWDM) between devices. It is critical for the link state to be propagated to the other side.

EtherChannel Bundle Dynamic Link Aggregation Protocols

Two common link aggregation protocols are Link Aggregation Control Protocol (LACP) and Port Aggregation Protocol (PAgP).

- PAgP is Cisco proprietary and was developed first.
- LACP was created as an open industry standard.
- All the member links must participate in the same protocol on the local and remote switches.

EtherChannel Bundle PAgP Port Modes

PAgP advertises messages with the multicast MAC address 0100:0CCC:CCCC and the protocol code 0x0104. PAgP can operate in two modes:

PAgP Port Modes	Description
Auto	 The interface does not initiate an EtherChannel to be established and does not transmit PAgP packets out of it. If an PAgP packet is received from the remote switch, this interface responds and then can establish a PAgP adjacency. If both devices are PAgP auto, a PAgP adjacency does not form.
Desirable	 An interface tries to establish an EtherChannel and transmit PAgP packets out of it. Active PAgP interfaces can establish a PAgP adjacency only if the remote interface is configured to auto or desirable.

EtherChannel Bundle LACP Port Modes

LACP advertises messages with the multicast MAC address 0180:C200:0002. LACP can operate in two modes:

LACP Port Modes	Description
Passive	 An interface does not initiate an EtherChannel to be established and does not transmit LACP packets out of it. If an LACP packet is received from the remote switch, this interface responds and then can establish an LACP adjacency. If both devices are LACP passive, an LACP adjacency does not form.
Active	 An interface tries to establish an EtherChannel and transmit LACP packets out of it. Active LACP interfaces can establish an LACP adjacency only if the remote interface is configured to active or passive.

EtherChannel Bundle EtherChannel Configurations

It is possible to configure EtherChannels by going into the interface configuration mode for the member interfaces and assigning them to an EtherChannel ID and configuring the appropriate mode:

- Static EtherChannel: A static EtherChannel is configured with the interface parameter command channel-group etherchannel-id mode on.
- LACP EtherChannel: An LACP EtherChannel is configured with the interface parameter command channel-group etherchannel-id mode {active | passive}.
- **PAgP EtherChannel:** A PAgP EtherChannel is configured with the interface parameter command **channel-group** *etherchannel-id* **mode** {**auto** | **desirable**} [**non-silent**].
 - By default, PAgP ports operate in silent mode, which allows a port to establish an EtherChannel with a device that is not PAgP capable and rarely sends packets.
 - Using the optional **non-silent** keyword requires a port to receive PAgP packets before adding it to the EtherChannel, which is recommended.

EtherChannel Bundle

EtherChannel Configurations (Cont.)

The following needs to be considered with EtherChannel configuration:

- Configuration settings for the EtherChannel are placed in the port-channel interface.
- Member interfaces need to be in the appropriate Layer 2 or Layer 3 (that is, no switch port) before being associated with the port channel.

Example 5-8 Sample Port-Channel Configuration

SW1# configure terminal

Shill contriguto contribution
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)# interface range gi1/0/1-2
SW1(config-if-range)# channel-group 1 mode active
Creating a port-channel interface Port-channel 1
SW1(config-if-range)# interface port-channel 1
SW1(config-if)# switchport mode trunk
12 FC 00 010 ATTNERDOWO F UPDOWN Time washeed on Takense
W2# configure terminal
Inter configuration commands, one per line. End with CNTL/Z.
<pre>WW2(config)# interface range gi1/0/1-2</pre>
W2(config-if-range)# channel-group 1 mode passive
reating a port-channel interface Port-channel 1
W2(config-if-range)# interface port-channel 1
W2(config-if)# switchport mode trunk
13:57:05.434: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet1/0/1, changed state to down
13:57:05.446: %LINEPROTO-5-UPDOWN: Line protocol on Interface

- GigabitEthernet1/0/2, changed state to down
- *13:57:12.722: %ETC-5-L3DONTENDL2: Gi1/0/1 suspended: LACP currently not enabled on the remote port.
- *13:57:13.072: %ETC-5-L3DONTBNDL2: Gi1/0/2 suspended: LACP currently not enabled on the remote port.
- *13:57:24.124: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0/2, changed state to up
- *13:57:24.160: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0/1, changed state to up
- *13:57:25.103: %LINK-3-UPDOWN: Interface Port-channell, changed state to up
- *13:57:26.104: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel1 changed state to up

EtherChannel Bundle

Verify Port-Channel Status

- As shown in Example 5-9, the command show etherchannel summary provides an overview of all the configured EtherChannels, along with the status and dynamic aggregation protocol for each one.
- When viewing the output of the show etherchannel summary command, the first thing that should be checked is the EtherChannel status, which is listed in the Port-channel column.
- The status should be SU, as highlighted in Example 5-9.

Example 5-9 Viewing EtherChannel Summary Status

SW1# show etherchannel summary
Flags: D - down P - bundled in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
A - formed by Auto LAG
Number of channel-groups in use: 1
Number of aggregators: 1
Group Port-channel Protocol Ports
+++
1 Po1(SU) LACP Gi1/0/1(P) Gi1/0/2(P)
2 Po2 (SU) PAgP Gi1/0/3 (P) Gi1/0/4 (P)

Note: The status codes are case sensitive, so please pay attention to the case of the field.

EtherChannel Logical Interface Status Fields

Logical EtherChannel Interface Status Fields are as follows:

- U The EtherChannel interface is working properly.
- D The EtherChannel interface is down.
- M The EtherChannel interface has successfully established at least one LACP adjacency; however, the EtherChannel is configured with a minimum number of active interfaces that exceeds the number of active participating member interfaces. Traffic will not be forwarded across this port channel. The command **port-channel min-links** *min-memberinterfaces* is configured on the port-channel interface.
- S The port-channel interface is configured for Layer 2 switching.
- R The port-channel interface is configured for Layer 3 routing.

EtherChannel Member Interface Status Fields

EtherChannel Member Interface Status Fields are as follows:

- P The interface is actively participating and forwarding traffic for this port channel.
- H The port-channel is configured with the maximum number of active interfaces. This interface is participating in LACP with the remote peer, but the interface is acting as a hot standby and does not forward traffic. The command **lacp max-bundle** *number-member-interfaces* is configured on the port-channel interface.
- I The member interface has not detected any LACP activity on this interface and is treated as an individual.
- w There is time left to receive a packet from this neighbor to ensure that it is still alive.
- s The member interface is in a suspended state.
- r The switch module associated with this interface has been removed from the chassis.

Port-Channel Interface Status

- The logical interface can be viewed with the command **show interface port-channel** portchannel-id.
- The output includes traditional interface statistics and lists the member interfaces and indicates that the bandwidth reflects the combined throughput of all active member interfaces.

Example 5-10 Viewing Port-Channel Interface Status

```
SW1# show interfaces port-channel 1
Port-channel1 is up, line protocol is up (connected)
Hardware is EtherChannel, address is 0062.ec9d.c501 (bia 0062.ec9d.c501)
MTU 1500 bytes, BW 2000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full-duplex, 1000Mb/s, link type is auto, media type is
input flow-control is off, output flow-control is unsupported
Members in this channel: Gi1/0/1 Gi1/0/2
```

EtherChannel Bundle EtherChannel Neighbors

Example 5-11 Viewing show etherchannel port Output

SW1# show etherchannel	port		Loc
! Output omitted for br	evity		Por
Channel	-group listing:		Gil
! This is the header th	at indicates all the po	orts that are for the first	! T
! EtherChannel interfac	e. Every member link is	nterface will be listed	1 0
Group: 1			! f
Ports i	in the group:		Pa
			Por
! This is the first mem	ber interface for inter	face Pol. This interface	Gil
! is configured for LAC	P active		
Port: Gi1/0/1			Age
Port state = Up Mstr	Assoc In-Bndl		
Channel group = 1	Mode = Active	Gcchange = -	1 8
Port-channel = Pol	GC = -	Pseudo port-channel = Pol	
Port index = 0	Load = 0x00	Protocol = LACP	Gro
! This interface is con	figured with LACP fast	packets, has a port priority	
! of 32,768 and is acti	ve in the bundle.		I T
			! T ! i
Flags: S - Device is s	ending Slow LACPDUs F	7 - Device is sending fast LACPDUs.	
A - Device is i	n active mode. P - Devi	ice is in passive mode.	Por

Local inf	ormation							
			LACP port	Admin	Oper	Port		Port
Port	Flags	State	Priority	Key	Key	Numb	er	State
Gi1/0/1	FA	bndl	32768	0x1	0x1	0x10	2	0x3F
! This in	terface'	s partner :	is configured	with LACP	fast pa	ckets,	has a s	ystem-id
! of 0081	.c4ff.8b	00, a port	priority of 3	2,768, and	l is act	ive in	the bun	dle
! for 0d:	00h:03m:	38s.						
Partner'	s inform	ation:						
		LACP port			Admin	Oper	Port	Port
Port	Flags	Priority	Dev ID	Age	key	Key	Number	State
Gi1/0/1	FA	32768	0081.c4ff.8b0	0 0s	0x0	0x1	0x102	0x3F
Age of th	e port i	n the curre	ent state: Od:	00h:03m:38	8			
! This is	the hea	der that in	ndicates all t	he ports t	hat are	for t	he secon	d
! EtherCh	annel in	terface. E	very member li	nk interfa	ace will	be li	sted.	
Group: 2								
	-							
	P	orts in the	e group:					
	-							
		st member : or PAgP de	interface for s sirable	interface	Po2. Th	is int	erface	
Port: Gil	/0/3							

EtherChannel Neighbors (Cont.)

Port state	=	Up Mstr In	-Bndl			
Channel group	=	2	Mode	=	Desirable-Sl	Gochange =
Port-channel	=	Po2	GC	=	0x00020001	Pseudo port

Port index = 0

-S1 Gcchange = 0 1 Pseudo port-channel = Po2 Protocol = PAgP

! This interface is in a consistent state, has a neighbor with the ! 0081.c4ff.8b00 address and has been in the current state for 54m:45s

Load = 0x00

Flags: S - Device is sending Slow hello. C - Device is in Consistent state. A - Device is in Auto mode. P - Device learns on physical port.

d - PAgP is down.

Timers: H - Hello timer is running. Q - Quit timer is running.

S - Switching timer is running. I - Interface timer is running.

Local information:

Port	Flags	State	Timers			PAgP Priority		ning Gr hod Ifi	-
Gi1/0/3	SC	U6/S7	н	30s	1	128	An	y 5	1
Partner's	infor	mation:							
	Partn	er		Partner		Partner		Partner	Group
Port	Name			Device ID		Port	Age	Flags	Cap.
Gi1/0/3	SW2			0081.c4ff	.8ъ00	Gi1/0/3	1s	SC	20001
Age of th	le port	in the	current	state: 0d	:00h:54m	:45s			

The output from the **show etherchannel port** command can provide too much information and slow down troubleshooting when a smaller amount of information is needed.

EtherChannel Neighbors LACP and PAgP

The command **show lacp neighbor** [detail] displays additional information about the LACP neighbor and includes the neighbor's system ID, system priority, and whether it is using fast or slow LACP packet intervals as part of the output.

Example 5-12 Viewing LACP Neighbor Information

SW1# she	ow lacp ne	ighbor						
Flags:	lags: S - Device is requesting Slow LACPDUs							
	F - Device is requesting Fast LACPDUs							
	A - Devic	e is in Ac	tive mode	P - Dev	vice is	in Pass	ive mode	
Channel	group 1 n	-						
		LACP port			Admin	Oper	Port	Port
Port	Flags	Priority	Dev ID	Age	key	Key	Number	State
Gi1/0/1	SA	32768	0081.c4ff.8b00	ls	0x0	0x1	0x102	0x3D
Gi1/0/2	SA	32768	0081.c4ff.8b00	26s	0x0	0x1	0x103	0x3D

The command **show pagp neighbor** displays additional information about the PAgP neighbor and includes the neighbor's system ID, remote port number, and whether it is using fast or slow PAgP packet intervals as part of the output.

Example 5-13 Viewing PAgP Neighbor Information

SW1# sho	w pagp neighbor							
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.								
	A - Device is in Auto mode. P - Device learns on physical port.							
Channel	group 2 neighbors Partner	Partner	Partner		Partner	Group		
Port	Name	Device ID	Port	Age	Flags	Cap.		
Gi1/0/3	SW2	0081.c4ff.8b00	Gi1/0/3	11s	SC	20001		
Gi1/0/4	SW2	0081.c4ff.8b00	Gi1/0/4	58	SC	20001		

EtherChannel Bundle Verifying EtherChannel Packets LACP and PAgP

- A vital step in troubleshooting the establishment of port channels is to verify that LACP or PAgP packets are being transmitted between devices.
- The first troubleshooting step that can be taken is to verify the EtherChannel counters for the appropriate protocol.
- The LACP counters can be cleared with the command clear lacp counters. The PAgP counters can be cleared with the command clear pagp counters.

Example 5-14	Viewing LAC	P Packet Counters
--------------	-------------	--------------------------

SW2# show	lacp co	ounters					
	LACI	PDUs	Mar)	ker	Marker H	Response	LACPDUs
Port	Sent	Recv	Sent	Recv	Sent	Recv	Pkts Err
Channel gr	coup: 1						
Gi1/0/1			0	0	0	0	0
Gi1/0/2	22	0	0	0	0	0	0
, -, -							
SW2# show							
	lacp co	ounters	Marl	ker	Marker H	Response	LACPDUs
SW2# show	lacp co LACI	ounters 2DUs				-	LACPDUs Pkts Err
SW2 # show Port	lacp co LACI Sent	PUIS Recv	Sent	Recv	Sent	Recv	
SW2 # show Port	lacp co LACI Sent	PUIS Recv	Sent	Recv	Sent	Recv	Pkts Err
SW2# show Port	lacp co LACI Sent coup: 1	PDUs Recv	Sent	Recv	Sent	Recv	Pkts Err

Example 5-15 Viewing PAgP Packet Counters

SW1# show	w pagp (counters			
	Infor	nation	Flu	ısh	PAgP
Port	Sent	Recv	Sent	Recv	Err Pkts
Channel g	group: 2	2			
Gi1/0/3	31	51	0	0	0
Gi1/0/4	44	38	0	0	0

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 5

Description				
VLAN Trunking Protocol (VTP)	Minimum number of port-channel member interfaces			
VTP revision reset	Maximum number of port-channel			
Dynamic Trunking Protocol (DTP)	member interfaces			
Disabling DTP	LACP system priority			
PAgP port modes	LACP interface priority			
LACP port modes	Troubleshooting EtherChannel Bundles			
	Load balancing traffic with			
EtherChannel configuration	EtherChannel bundles			

Prepare for the Exam Key Terms for Chapter 5

Terms

Dynamic Trunking Protocol (DTP)

EtherChannel bundle

member links

LACP interface priority

LACP system priority

load-balancing hash

VLAN Trunking Protocol (VTP)

Prepare for the Exam Command Reference for Chapter 5

Task	Command Syntax
Configure the VTP version	vtp version {1 2 3}
Configure the VTP domain name	vtp domain domain-name
Configure the VTP mode for a switch	<pre>vtp mode { server client transparent none} (required for the first VTP v3 server) vtp primary</pre>
Display the STP root bridge and cost	switchport mode dynamic desirable
Configure a switch port to actively attempt to establish a trunk link	switchport mode dynamic auto
Configure the member ports for a static EtherChannel	channel-group etherchannel-id mode on

Prepare for the Exam Command Reference for Chapter 5 (Cont.)

Task	Command Syntax
Configure the member ports for a LACP EtherChannel	channel-group etherchannel-id mode {active passive}
Configure the member ports for a PAgP EtherChannel	channel-group etherchannel-id mode {auto desirable} [non-silent]
Configure the LACP packet rate	lacp rate {fast slow}
Configure the minimum number of member links for the LACP EtherChannel to become active	port-channel min-links min-links
Configure the maximum number of member links in an LACP EtherChannel	lacp max-bundle max-links

Prepare for the Exam Command Reference for Chapter 5 (Cont.)

Task	Command Syntax
Configure a switch's LACP system priority	lacp system-priority priority
Configure a switch's LACP port priority	lacp port-priority priority
Configure the EtherChannel load- balancing hash algorithm	port-channel load-balance hash
Display the contents of all current access lists	<pre>show access-list [access-list-number access-list-name}</pre>
Display the VTP system settings	show vtp status
Display the switch port DTP settings, native VLANs, and allowed VLANs	show interface [interface-id] trunk
Display a brief summary update on EtherChannel interfaces	show etherchannel summary

Thank you! Questions?

https://www.fit.vutbr.cz/research/groups/nes@fit