i U
(of Ry of 0/

Chapter 29: Introduction to
Automation Tools

Instructor Materials

CCNP Enterprise: Core Networking

Chapter 29 Content

This chapter covers the following content:

- Embedded Event Manager (EEM) - This section illustrates common use
cases and operations of the on-box EEM automation tool as well as the Tcl

scripting engine.

- Agent-Based Automation Tools - This section examines the benefits and
operations of the various agent-based automation tools.

- Agentless Automation Tools - This section examines the benefits and
operations of the various agentless automation tools.

This chapter is intended to provide a high-level overview of some of the most
common configuration management and automation tools that are available.

Embedded Event Manager

« Embedded Event Manager (EEM) is a very flexible and powerful Cisco 10S tool. EEM
allows engineers to build software applets that can automate many tasks.

« EEM enables you to build custom scripts using Tcl. Scripts can automatically execute
based on the output of an action or an event on a device.

« EEM is all contained within the local device. There is no need to rely on an external
scripting engine or monitoring device in most cases.

« This section will cover EEM applets, EEM and Tcl scripts, and EEM summary.

Embedded Event Manager
EEM Event Detectors

Figure 29-1 illustrates some EEM
event detectors and how they
interact with the 10S subsystem.

EEM applets are composed of
multiple building blocks. This
chapter focuses on two of the
primary building blocks that
make up EEM applets: events
and actions.

EEM applets use a similar logic
to the if-then statements used in
some of the common
programming languages (for
instance, if an event happens,
then an action is taken).

afaln
cisco

: Cisco I0S EEM Applet Policy : Cisco I0S EEM TCL Policy

I Subscribes to Receive Events | Subscribes to Receive Events
I and Implement Policy Actions ! and Implement Policy Actions
I |

Policy Director
A

A
Cisco I0S EEM Server

A

RPC
Track

None
Syslog
SNMP
Timer

Counter
Interface
cL
OIR
RF
IOSWDSYSMON
GOLD
APPL
Process
WDSYSMON
SNMP-Notification

SNMP Agent Cisco I0S Interface Counters CiscolOSCLI OIR Syslog HA
CPU Descriptor Blocks (IDBs) Memory Diagnostics Cisco IOS Processes

Figure 29-1
EEM Event Detectors

Embedded Event Manager

EEM Applets

Example 29-1 shows an applet that is looking
for a specific syslog message, stating that the
LoopbackO interface went down. If this specific

Example 29-1 Syslog Appler Example

event manager applet LOOPOD

syslog pattern is matched (an event) at least
once, then the following actions will be taken: e etaats
1. The LoopbackO interface will be shut down devion £10 cbi comnand Tinteriace doepnackdt
and brought back up_ afn%m 5.0 e co.'r:f.?ncl ro s.hljltdow'rj'-' ‘
2. The router will generate a syslog message i o1 syeiog mog “true fomien e 5 canee get upt-
that says, “I've fallen, and | can’t get up!” o o eptEsaeonpany oo sisern eopoants Taoseer
3. An email message that includes the output e T e e Pomesd, Fese menieex

of the show interface loopbackO

command will be sent to the network Remember to include the enable and

administrator. configure terminal commands at the
beginning of actions within an applet.

Embedded Event Manager

Debugging Output

Example 29-2 Debugging Ourpur of an Fvenr Manager Action
Based on the output P aging Ourpur of s

from the debug event Swieent
. . Switch# configure terminal
man ag el' aCtlon CII Enter configuration commands, cone per line. End with CHTL/Z.
Command, you Can See Switch({config)# interface loopbackO
. . Switch(config-if)+# shutdown
the actions taking place Switen (config-if) 4
When the applet IS 17:21:59,.214: RLINK=5=CHANGED: Interface Loopback(, changed state to administratively
1 down
runnlng Example 29-2 17:21:55.217: %HA EM-6-LOG: LOOPO : DEBUG(cli_lib} : : CTL : cli_open called.
shows the applet being 17:21:58.221: $HA_EM-6-L0G: LOOPO : DEBUG(cli_lib) : : OUT : Switch>
engaged When a user 17:21:59.221: %HA_EM-6-L0OG: LOOPO : DEBUG(cli_lib) : : IN : Switch>enable
. 17:£1:59.231: %HA EM-6-L2G: LOOPO : DEBUG(cli_lib) : : QUI : Switché
Issues the shutdown 17:21:59.231: $HA_EM-6-LOG: LOOPO : DEBUG(cli_lib) : : IN : Switchéshow
interface loopbackld
Command On the 17121:59. 254 $HA EM-e-LOG: LOOFD : DEBUG(cli_lib} : : OUI : Loopback(is
LOOpbaCkO |nterface. administratively down, line protocccl is deown

(Entire output not shown.)

Embedded Event Manager
CLI Patterns

When certain commands are entered using
the CLI’ they trlgger a‘n EEM event Wlthln event manager environment tftpserver tftp://10.1.200.2%8/
an applet. The configured actions then take event manager applet BACKUP-CONFIG

place as a result of the CLI pattern being TSR peviemn nmee mem smers
matChed acticn 2.0 cli command "configure terminal®

acticn 3.0 cli command "file prompt gquiet”

Example 29-3 WR MEM Appler

event manager environment filename Router.cfyg

acticen 4.0 eli command "end”

Example 29_3 uses another Common EEM act::u:-n :E cil co:r:r.anz ::cop;'.at.ar: $tf'.c._'53jr"?er$f11enane"
« . action 6.0 cli comman configure terminal”
applet tO matCh the CLI pattern erte action 7.0 cli command "no file prompt guiet”
mem_” When the applet |S trlggered, the action 8.0 syslog priority informational msg "Configuration File Changed!

IFTP backup =successful.”

following actions are invoked:

1. The router generates a syslog message
that says “Configuration File Changed!
TFTP backup successful.”

2. The startup-config file is copied to a

TFTP server.

Embedded Event Manager
EEM Environment Values

There are multiple ways to call out specific EEM environment values. Although it is
possible to create custom names and values that are arbitrary and can be set to
anything, it is good practice to use common and descriptive variables. Table 29-2 lists
some of the email variables most commonly used in EEM.

Table 29-2 Common EEM Email Variables

_email_server SMTP server IP address or DNS name 10.0.0.25 or MAILSVRO1
_email_to Email address to send email to neteng@yourcompany.com
_email_from Email address of sending party No-reply@yourcompany.com

_email_cc Email address of additional email receivers helpdesk@yourcompany.com

Embedded Event Manager

Tcl Scripts

Example 29-4 shows how to
manually execute an EEM
applet that executes a Tcl
script. It shows an EEM
script configured with the
event none command,
which means there is no
automatic event that the
applet is monitoring, and
this applet runs only when it
is triggered manually. To
manually run an EEM
applet, the event manager
run applet-name command
must be used.

Example 29-4 Manually Execure EEM Appler

event manager applet Ping
event none
action 1.0 cli command "enable™

acticon 1.1 cli command "tclsh flash:/ping.tcl”
Bouters event manager run Ping

Routers

19:32:16,564: %HA EM-6-L0OG: Ping : DEBUG(cli_lib) : :

15:32:16.564: %HA EM-6-L0OG: Ping : DEBUG(cli_lib) :

19:32:16,568: %HA EM-6-L0OG: Ping : DEBUG(cli_lib) :

15:32:16.578: %HA EM-6-L0OG: Ping : DEBUG(cli lib) :

19:32:16,578: %HA EM-6-L0OG: Ping : DEBUG(cli_lib) :
flash:/ping.tcl

15:32:16.711: %HA EM-6-L0OG: Ping : DEBUG(cli lib) :
to abort.

19:32:16,711: %HA EM-&- LOF: Fing : LDEBUG(cli_lib) :

ICMP Echos to 15%2.168.0.2, timeout ia 2 secconds:

159:32:16.711: %HA _EM-6-LOG: CEBOG (cli_lib)

19:32:16,711: %HA EM-6-L0OG: Ping : DEBUG(cli_lib) :
100 percent (5/5), round-trip minfsavg/max = 1/1/4 ms

Ping :

(Entire output not shown.)

CTL

: IN

: QOT :

: QOT :

: QOT :
: QOT :

: cli open called.
: OOT :
: IN
: OOT :

Routers

: Router>enable

Roucer#

: Router#tclsh

Type escape Seguence

Sending 5, 100-byte

rrrein

Succeszz rate 1is

Embedded Event Manager
Script Contents

Example 29-5 displays a snippet for
the exact content of the ping.tcl
script used in the manually triggered

Example 29-5 ping.rcl Scripr Conrents

EEM applet In Example 29_4. Router# more flash:ping.tcl

foreach address
192.168.0.2
192.168.0.3

To see the contents of a Tcl script
that resides in flash memory, issue
the more command followed by the

} { ping $address}

file location and filename.

The more command can be used to
view all other text-based files stored
in the local flash memory as well.

Embedded Event Manager

EEM Summary

The value in using automation and configuration management tools is the ability to move more
quickly than is possible with manual configuration.

Automation helps ensure that the level of risk due to human error is reduced by using proven
automation methods.

The following are some of the most common and repetitive configurations for which network
operators leverage automation tools to increase speed and consistency:

» Device name/IP address
* Quality of service

» Access list entries

» Usernames/passwords
 SNMP settings

« Compliance

Agent-Based Automation
Tools

» This section covers a number of agent-based tools as well as some of the key
concepts to help network operators decide which tool best suits their environment and
business use cases.

Agent-Based Automation Tools

Puppet

Puppet is a robust configuration management and automation tool. Puppet works with many
different vendors and is a commonly used tools used for automation.

Puppet can be used during the entire lifecycle of a device, including initial deployment,
configuration management, and repurposing and removing devices in a network.

Puppet uses a puppet master (server) to communicate with devices that have the puppet
agent (client) installed locally on the device.

Changes and automation tasks are executed within the puppet console and then shared
between the puppet master and puppet agents.

These changes or automation tasks are stored in the puppet database (PuppetDB) so that
the tasks can be saved to be pushed out to the puppet agents at a later time.

Agent-Based Automation Tools

Puppet (Cont.)

Figure 29-2 illustrates the communications path between the puppet master and the puppet
agents, as well as the high-level architecture. The solid lines show the primary communications
path, and the dotted lines indicate optional high availability.

Figure 29-2 [HHigh-Level Pupprer Architecture and Basic Pupper Communications Parb

090 .

End Users Master

I

eoe [JIIIID] decnecnnnnnnnnnnnnnnnnnnns 6

=+ Q1IN

Master Replica (optional)

Agent-Based Automation Tools

Puppet (Cont.)

Puppet agents communicate to the puppet master by using different TCP connections. TCP
ports uniquely represent a communications path from an agent running on a device or node.
Puppet can periodically verify the configuration on devices. This can be set to any frequency
that the network administrator deems necessary. If a configuration is changed, it can be
alerted on, and automatically put back to the previous configuration.

There are three different installation types with Puppet. Table 29-3 describes the scale
differences between the different installation options.

Table 29-3 Puppet Installation Modes

Monolithic Up to 4000 nodes
Monolithic with compile masters 4000 to 20,000 nodes

Monolithic with compile masters and More than 20,000 nodes
standalone PE-PostgreSQL

Agent-Based Automation Tools

Puppet (Cont.)

« The recommended deployment is a monolithic installation, which supports up to 4000
nodes. In a very large scale environment, best practices are high availability and centralized
management. Administrators may need a master of masters (MoM) to manage the
distributed puppet masters and their associated databases.

« Large deployments also need compile masters, which are load-balanced Puppet servers.

Figure 29-3 shows a typical large-scale enterprise deployment model of Puppet and its
associated components.

G- wnw) o—e [__mim)

Compile Masters Load Balancer Agents

0O0 | |

End Users Master of Masters Master Replica (optional)

Figure 29-3 Large-Scale Pupper Enterprise Deployment

Agent-Based Automation Tools

Puppet Modules

Puppet modules contain these components:

 Manifests
« Templates
* Files

Manifests are the code that configures the clients or nodes running the puppet agent.

Manifests are pushed to the devices using SSL and require certificates to ensure the security of
communications between the puppet master and the puppet agents.

Manifests can be saved as individual files and have a file extension .pp.

One module called cisco _ios, contains many manifests and leverages SSH to connect to
devices.

Agent-Based Automation Tools

Puppet Manifest

« Example 29-6 shows an example of a manifest file, named NTP_Server.pp, that configures
a Network Time Protocol (NTP) server on a Cisco Catalyst device.

« This example shows that the NTP server IP address is configured as 1.2.3.4, and it uses
VLAN 42 as the source interface. The line ensure => ‘present’ means that the NTP server
configuration should be present in the running configuration of the Catalyst IOS device on

which the manifest is running.

Example 29-6 Pupper NTP_Server.pp Manifesr

ntp server { '1.2.3.4':
ensure => 'present',
key => 94,
prefer => true,
minpoll => 4,
maxpoll => 14,

source_interface => 'Vlan 42°',

Agent-Based Automation Tools

Puppet Manifest (Cont.)

» Puppet leverages a domain-specific language (DSL) as its “programming language.” It is

based on the Ruby language.
« Example 29-7 shows a manifest file called MOTD.pp that is used to configure a message-of-

the-day (MOTD) banner on Catalyst I0S devices.

Example 29-7 Puppetr MOTD.pp Manifest

banner { 'default':

motd => 'Violators will be prosecuted',

}

Agent-Based Automation Tools

Chef

« Chefis an open source configuration management tool. Chef is written in Ruby and Erlang,
using Ruby for writing code within Chef.

« Configuration management tools function in two different types of models: push and pull.

» Chefis similar to Puppet in several ways:
« Both have free open source versions available
« Both have paid enterprise versions available
« Both manage code that needs to be updated and stored
« Both manage devices or nodes to be configured
» Both leverage a pull model
» Both function as a client/server model

Agent-Based Automation Tools

Chef’s Structure

« Chef’s structure, terminology, and core components are different from those of Puppet.
* Figure 29-4 illustrates the high-level architecture of Chef and the communications path
between the various areas within the Chef environment.

Figure 29-4
High-Level Chef Architecture

CRBesks medipet aelafe el e

o]
cisco

Agent-Based Automation Tools
Chef Components

Although the core concepts of Puppet and Chef are similar, the terminology differs. Whereas
Puppet has modules and manifests, Chef has cookbooks and recipes. Table 29-4 compares
the components of Chef and Puppet and provides a brief description of each component.

Table 29-4 Puppet and Chef Comparison

Chef server Puppet master Server/master functions

Chef client Puppet agent Client/agent functions

Cookbook Module Collection of code or files

Recipe Manifest Code being deployed to make configuration
changes

Workstation Puppet console Where users interact with configuration

management tools and create code

Agent-Based Automation Tools

Chef Components (Cont.)

Code is created on the Chef workstation. This code is stored in a file called a recipe

Once a recipe is created on the workstation, it must be uploaded to the Chef server in
order to be used in the environment. knife is the name of the command-line tool used to
upload cookbooks to the Chef server.

The command to execute an upload is knife upload cookbookname.

The Chef server can be hosted locally on the workstation, hosted remotely on a server, or
hosted in the cloud.

There are four types of Chef server deployments:

Chef Solo - The Chef server is hosted locally on the workstation.

Chef Client and Server -This is a typical Chef deployment with distributed components.
Hosted Chef - The Chef server is hosted in the cloud.

Private Chef - All Chef components are within the same enterprise network.

Agent-Based Automation Tools

Chef Server

» The Chef server sits in between the workstation and the nodes. All cookbooks are
stored on the Chef server which holds all the tools necessary to transfer the node
configurations to the Chef clients.

« OHAI collects the current state of a node to send the information back to the Chef
server through the Chef client service. The Chef server then checks to see if there
Is any new configuration that needs to be on the node by comparing the
information from the OHAI service to the cookbook or recipe.

 When a node needs a recipe, the Chef client service handles the communication
back to the Chef server to signify the node’s need for the updated configuration or
recipe.

Agent-Based Automation Tools

Recipe File

Example 29-8 shows a recipe file constructed

in Ruby.

Example 29-8 Chef demo_install.rb Recipe

#

Cookbook Name:: cisco-cookbook

Recipe:: demo_install

#

Copyright (c) 2014-2017 Cisco and/or its affiliates.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

In our recipes, due to the number of different parameters, we prefer to align
the arguments in a single column rather than following rubocop's style.

Chef::Log.info('Demo cisco_command config provider')

cisco_command config 'loop42' do
action :update
command '
interface loopback42
description Peering for AS 42

ip address 192.168.1.42/24

cisco_command config 'system-switchport-default' do
command 'no system default switchport'

end

cisco_command config 'feature bgp' do

command ' feature bgp'

end

cisco_command_config 'router_bgp_42' do
action :update
command '
router bgp 42
router-id 192.168.1.42
address-family ipv4 unicast
network 1.0.0.0/8
redistribute static route-map bgp-statics

neighbor 10.1.1.1

Agent-Based Automation Tools
SaltStack Overview

« SaltStack is built on Python with a Python interface so a user can program directly to
SaltStack by using Python code.

« However, most of the instructions or states that get sent out to the nodes are written in
YAML or a DSL. These are called Salt formulas.

« Another key difference from Puppet and Chef is SaltStack’s overall architecture. SaltStack
uses systems, which are divided into various categories. SaltStack has masters and
minions.

« SaltStack uses a distributed messaging platform called OMQ (ZeroMQ). SaltStack is an
event-driven technology that has components called reactors and beacons. A reactor lives
on the master and listens for any type of changes in the node or device that differ from the
desired state or configuration.

« Beacons live on minions. If a configuration changes on a node, a beacon naotifies the reactor
on the master. This is the remote execution system and it helps determine whether the
configuration is in the appropriate state on the minions. These actions are called jobs which
when executed can be stored in an external database.

Agent-Based Automation Tools

SaltStack Overview (Cont.)

SaltStack uses pillars and grains to control state and send configuration changes. SaltStack
grains are run on the minions to gather system information to report back to the master. This

information is typically gathered by the salt-minion daemon. Grains can provide specifics to
the master about the host.

Pillars store data that a minion can retrieve from the master. Minions can be assigned to
pillars.

Data can be stored for a specific node inside a pillar, keeping it separate from any other
node that is not assigned to this particular pillar. Confidential data can be secured and only
shared with assigned minions.

Agent-Based Automation Tools

SaltStack Architecture

» SaltStack can scale to
a very large number of
devices. SaltStack also
has an enterprise
version and a GUI
called SynDic.

* Figure 29-5 shows the
overall architecture of
SaltStack and its
associated
components.

afaln
cisco

CLOUD MASTER FILE SERVER
VMWARE FIL
AWS O O GITFS
DIGITALOCEAN SVN

< \ ”
WHEEL AUTH .
CONFIG KEYSTONE
MINIONS — LOAP
KEY @ v @PAM

RUNNER REACTOR WMIN/ o’ o ENGINE API
SLACK
6 =
LOGSTASH
3 —
EVENT BUS T
OMQ / TORNADO / SSH

b

iy

WINDOWS LINUX AlX NETWORK
BEACON BEACON BEACON

@%’ Q@GB @@@3

RETURNER GRAINS RETURNER GRAINS RETURNER GRAINS

Iy

iy

Agent-Based Automation Tools

SaltStack CLI

« SaltStack has its own DSL. The
SaltStack command structure contains
targets, commands, and arguments.

« The target is the desired system that
the command should run.

« The command structure uses the
module.function syntax followed by the
argument.

« An argument provides detail to the
module and function that is being
called on in the command.

D ® 1. rootGsaltimaster: /home/vagrant (ssh)

« Figure 29-6 shows the correct
SaltStack syntax as well as a
command called cmd.run.

Agentless Automation Tools

» This section covers a variety of agentless tools as well as some of the key concepts to
help network operators decide which tool best suits their environment and business
use cases.

Agentless Automation Tools
Ansible Overview

Ansible is an automation tool that is
capable of automating cloud
provisioning, deployment of
applications, and configuration
management.

Ansible is agentless, so no software
needs to be installed on the client
machines. Ansible communicates using
SSH. Ansible can use built-in
authorization escalation when it needs
to raise the level of administrative
control.

Ansible sends all requests from a
control station. Figure 29-8 illustrates
the Ansible workflow.

Control Station

Agentless Automation Tools

Ansible Playbook Components

Ansible uses playbooks to
deploy configuration changes
or retrieve information from
hosts within a network. An
Ansible playbook is a
structured sets of instructions.
An Ansible playbook contains
multiple plays, and each play
contains the tasks that each
player must accomplish in
order for the particular play to
be successful,

Table 29-5 describes the
components used in Ansible
and provides some commonly
used examples of them.

Playbook

Play

Task

A set of plays for
remote systems

A set of tasks
applied to a single
host or group of
hosts

A call to an Ansible
module

Enforcing
configuration and/or
deployment steps

Grouping a set of
hosts to apply policy
or configuration to
them.

Logging into a
device to issue a
show command to
retrieve output.

Agentless Automation Tools

Ansible Playbooks in YAML

Ansible playbooks are written using
YAML (Yet Another Markup
Language). Ansible YAML files
usually begin with a series of three
dashes (---) and end with a series of
three periods (...). Example 29-9
shows a YAML file that contains a list
of musical genres.

YAML uses dictionaries that are
similar to JSON dictionaries as they
also use keyl/value pairs. Example
29-10 shows a YAML dictionary
containing an employee record.

Example 29-9 YAML List Example

List of music genres
Music:

- Metal

- Rock

- Rap

- Country

Example 29-10 YAML Dicrionary Example

HR Employee record
Employeel:
Name: John Dough
Title: Developer

Nickname: Mr. DBug

Agentless Automation Tools
Ansible CLI Commands

Ansible has a CLI tool that can be used to run playbooks or ad hoc CLI commands on
targeted hosts. This tool has very specific commands that you need to use to enable
automation. The table below shows the most common Ansible CLI commands and
associated use cases.

CLI Command

ansible Runs modules against targeted hosts

ansible-playbook Runs playbooks

ansible-docs Provides documentation on syntax and parameters in the CLI
ansible-pull Changes Ansible clients from the default push model to the pull model

ansible-vault Encrypts YAML files that contain sensitive data

Agentless Automation Tools
Ansible Configuration Example

Example 29-14 shows an alternative
version of the Configurelnterface.yaml
playbook named EIGRP_Configuration__
Example.yaml, with EIGRP added,
along with the ability to save the
configuration by issuing a “write
memory.”

These tasks are accomplished by
leveraging the ios_command module in
Ansible. This playbook adds the
configuration shown here to the
CSR1KV-1 router.

Example 29-14 Ansible EIGRP Configurarion_Example.yaml Playbook

= host=: C3R1EV-1

gasher_facta: false
connection: Local
tasks:

= name: Configure GigabitEthernetl Interface
ios_config:
lines:
- description Configured by ANZIELE!!!
— ip addres=a 10.1.1.1 ZE5_255.355.0
= no shuotdewn

parenta: interface GigabitEthernetZ

host: "{{ an=ible_hos=t }}"
userpname: cisco

pazsword: testbess

- pame: CONEIG Gigs
ios_config:
lines:
- description Configured By AN3ITELE!!!
- no ip addre=s
- skutdown

parents: interface GigabitEshernet
host: "{{ ansible_host }}"
n=ername: ciseo

password: testbest

- mame: CONEIG EIGRP 100

lines:

- router sigrp 100

Agentless Automation Tools

Puppet Bolt

« Puppet Bolt allows you to leverage the power of Puppet without having to install a puppet
master or puppet agents on devices or nodes.

« It connects to devices by using SSH or WinRM connections. Puppet Bolt is an open
source tool that is based on the Ruby language and can be installed as a single package.

* Puppet Bolt allows you to execute a change or configuration immediately and then
validate it. There are two ways to use Puppet Bolt:

« Orchestrator-driven tasks - Orchestrator-driven tasks can leverage the Puppet
architecture to use services to connect to devices. This design is meant for large-
scale environments.

« Standalone tasks - Standalone tasks are for connecting directly to devices or nodes
to execute tasks and do not require any Puppet environment or components to be
set up in order to realize the benefits and value of Puppet Bolt.

Agentless Automation Tools

Puppet Bolt Command Line

Usage: bolt <subcommand> <action> [options]

* |Individual commands can be run

Available subcommands:

from the Command Iine by using bolt command run <command> Run a command remotely

bolt script run <script> Upload a local script and run it remotely

bolt task run <task> [params] Run a Puppet task

the Command b0|t Command ru n bolt plan run <plan> [params] Run a Puppet task plon
. bolt file upload <src» <dest> Upload a local file
command name followed by the list | —_————
Of deViceS to run the Command n, nodes NODES Node(s) to connect to in URI format [protocol://Jhost[:port]

Eg. nodes bolt,puppet.com

ag ai nSt Eg. nodes localhost,ssh://nix.com:2222,winrm://windows .puppet ., com
.

* NODES can either be comma-separated, '@<file>' to read

i After a Script iS bUilt, execute it * nodes from a file, or '~' to read from stdin

* Windows nodes must specify protocol with winrm://

from the command line against the * protocol is ‘ssh’ by default, may be ‘ssh® or

* port is "22° by default for SSH, "5985° for winrm (Optional)

remote deV|CeS that need to be user USER User to authenticate as (Optional)

password [PASSWORD] Password to authenticate with (Optional).

Configured’ using the Command i VY Omit the value to prompt for the password.

Private ssh key to authenticate with (Optional)

= = 7 concurrency CONCURRENCY Maximum number of simultaneous connections (Optional, defaults to 100)
bOIt SC rl pt ru n Scrlpt name modulepath MODULES List of directories containing modules, separated by :
u . params PARAMETERS Parameters to a t¢ r plan
followed by the list of devices to format FORMAT Output format to use: hunan or json
. . . $y insecure Whether to connect insecurely
h 29_ transport TRANSPORT Specify a default transport: ssh, winrm, pcp
run t e Scrlpt agaInSt' Flgure 14 run-as USER User to run as using privilege escalation
H sudo [PROGRAM] Program to execute for privilege escalation. Currently only sudo is supported.
ShOWS a ||St Of Some Of the -sudo-password [PASSWORD] Password for privilege escalation
. [no-]Jtty Request a pseudo TTY on nodes that support it
available commands for Puppet , ~-help Display help

verbose Display verbose logging

BOIt debug Display debug logging
.

version Display the version

Agentless Automation Tools

Puppet Bolt Command Line

Puppet Bolt tasks use an API to retrieve data between Puppet Bolt and the remote device.

Tasks are part of the Puppet modules and use the naming structure
modulename::taskfilename.

Tasks can be called from the command line much like commands and scripts. You use the
command bolt task run modulename::taskfilename to invoke these tasks from the command
line.

The modulename::taskfilename naming structure allows the tasks to be shared with other
users on Puppet Forge.

A task is commonly accompanied by a metadata file that is in JSON format. A JSON
metadata file contains information about a task, how to run the task, and any comments
about how the file is written.

Agentless Automation Tools

SaltStack Salt SSH (Server-Only Mode)

SaltStack offers an agentless option called Salt SSH that allows users to run Salt
commands without having to install a minion on the remote device or node. The main
requirements to use Salt SSH are that the remote system must have SSH enabled and
Python installed.

Salt SSH can work in conjunction with the master/minion environment, or it can be used
completely agentless across the environment. By default, Salt SSH uses roster files to
store connection information for any host that doesn’t have a minion installed. Example
29-16 shows the content structure of this file.

Example 29-16 Salt SSH Roster File

managed:
host: 192.1668.10.1

uger: admin

Agentless Automation Tools
Comparing Tools

Table 29-7 provides a high-level comparison of the tools covered in this chapter.

Architecture

Language
Terminology

Support for large-
scale deployments

Agentless version

Puppet masters
and puppet agents

Puppet DSL

Modules and
Manifests

Yes

Puppet Bolt

Chef server and

Chef clients
Ruby DSL

Cookbooks and
recipes

Yes

N/A

Control station and

remote hosts
YAML

Playbooks and
plays
Yes

Yes

Salt master and
minions

YAML

Pillars and grains

Yes

Salt SSH

Prepare for the Exam

Prepare for the Exam

Key Topics for Chapter 29

EEM applets and configuration

Puppet

Chef

SaltStack (agent and server mode)
Ansible

Puppet Bolt

SaltStack SSH (server-only mode)

High-Level Configuration Management and
Automation Tool Comparison

Prepare for the Exam

Key Terms for Chapter 29
Cookbooks
Embedded Event Manager (EEM)
Grain
Manifest
Module
Pillar
Play

Playbook
Recipe
Tcl

	Chapter 29: Introduction to Automation Tools
	Chapter 29 Content
	Embedded Event Manager
	Embedded Event Manager EEM Event Detectors
	Embedded Event Manager EEM Applets
	Embedded Event Manager Debugging Output
	Embedded Event Manager CLI Patterns
	Embedded Event Manager EEM Environment Values
	Embedded Event Manager Tcl Scripts
	Embedded Event Manager Script Contents
	Embedded Event Manager EEM Summary
	Agent-Based Automation Tools
	Agent-Based Automation Tools Puppet
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet Modules
	Agent-Based Automation Tools Puppet Manifest
	Agent-Based Automation Tools Puppet Manifest (Cont.)
	Agent-Based Automation Tools Chef
	Agent-Based Automation Tools Chef’s Structure
	Agent-Based Automation Tools Chef Components
	Agent-Based Automation Tools Chef Components (Cont.)
	Agent-Based Automation Tools Chef Server
	Agent-Based Automation Tools Recipe File
	Agent-Based Automation Tools SaltStack Overview
	Agent-Based Automation Tools SaltStack Overview (Cont.)
	Agent-Based Automation Tools SaltStack Architecture
	Agent-Based Automation Tools SaltStack CLI
	Agentless Automation Tools
	Agentless Automation Tools Ansible Overview
	Agentless Automation Tools Ansible Playbook Components
	Agentless Automation Tools Ansible Playbooks in YAML
	Agentless Automation Tools Ansible CLI Commands
	Agentless Automation Tools Ansible Configuration Example
	Agentless Automation Tools Puppet Bolt
	Agentless Automation Tools Puppet Bolt Command Line
	Agentless Automation Tools Puppet Bolt Command Line
	Agentless Automation Tools SaltStack Salt SSH (Server-Only Mode)
	Agentless Automation Tools Comparing Tools
	Prepare for the Exam
	Prepare for the Exam Key Topics for Chapter 29
	Prepare for the Exam Key Terms for Chapter 29
	Slide 44

