
Chapter 29: Introduction to
Automation Tools

Instructor Materials

CCNP Enterprise: Core Networking

2© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Chapter 29 Content

This chapter covers the following content:

• Embedded Event Manager (EEM) - This section illustrates common use

cases and operations of the on-box EEM automation tool as well as the Tcl

scripting engine.

• Agent-Based Automation Tools - This section examines the benefits and

operations of the various agent-based automation tools.

• Agentless Automation Tools - This section examines the benefits and

operations of the various agentless automation tools.

This chapter is intended to provide a high-level overview of some of the most

common configuration management and automation tools that are available.

3© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

• Embedded Event Manager (EEM) is a very flexible and powerful Cisco IOS tool. EEM

allows engineers to build software applets that can automate many tasks.

• EEM enables you to build custom scripts using Tcl. Scripts can automatically execute

based on the output of an action or an event on a device.

• EEM is all contained within the local device. There is no need to rely on an external

scripting engine or monitoring device in most cases.

• This section will cover EEM applets, EEM and Tcl scripts, and EEM summary.

4© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

EEM Event Detectors

Figure 29-1 illustrates some EEM

event detectors and how they

interact with the IOS subsystem.

• EEM applets are composed of

multiple building blocks. This

chapter focuses on two of the

primary building blocks that

make up EEM applets: events

and actions.

• EEM applets use a similar logic

to the if-then statements used in

some of the common

programming languages (for

instance, if an event happens,

then an action is taken).
Figure 29-1

EEM Event Detectors

5© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

EEM Applets

Example 29-1 shows an applet that is looking

for a specific syslog message, stating that the

Loopback0 interface went down. If this specific

syslog pattern is matched (an event) at least

once, then the following actions will be taken:

1. The Loopback0 interface will be shut down

and brought back up.

2. The router will generate a syslog message

that says, “I’ve fallen, and I can’t get up!”

3. An email message that includes the output

of the show interface loopback0

command will be sent to the network

administrator.
Remember to include the enable and

configure terminal commands at the

beginning of actions within an applet.

6© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

Debugging Output

Based on the output

from the debug event

manager action cli

command, you can see

the actions taking place

when the applet is

running. Example 29-2

shows the applet being

engaged when a user

issues the shutdown

command on the

Loopback0 interface.

(Entire output not shown.)

7© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

CLI Patterns

When certain commands are entered using

the CLI, they trigger an EEM event within

an applet. The configured actions then take

place as a result of the CLI pattern being

matched.

Example 29-3 uses another common EEM

applet to match the CLI pattern “write

mem.” When the applet is triggered, the

following actions are invoked:

1. The router generates a syslog message

that says “Configuration File Changed!

TFTP backup successful.”

2. The startup-config file is copied to a

TFTP server.

8© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

EEM Environment Values

There are multiple ways to call out specific EEM environment values. Although it is

possible to create custom names and values that are arbitrary and can be set to

anything, it is good practice to use common and descriptive variables. Table 29-2 lists

some of the email variables most commonly used in EEM.

EEM Variable Description Example

_email_server SMTP server IP address or DNS name 10.0.0.25 or MAILSVR01

_email_to Email address to send email to neteng@yourcompany.com

_email_from Email address of sending party No-reply@yourcompany.com

_email_cc Email address of additional email receivers helpdesk@yourcompany.com

Table 29-2 Common EEM Email Variables

9© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

Tcl Scripts

Example 29-4 shows how to

manually execute an EEM

applet that executes a Tcl

script. It shows an EEM

script configured with the

event none command,

which means there is no

automatic event that the

applet is monitoring, and

this applet runs only when it

is triggered manually. To

manually run an EEM

applet, the event manager

run applet-name command

must be used.

(Entire output not shown.)

10© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

Script Contents

Example 29-5 displays a snippet for

the exact content of the ping.tcl

script used in the manually triggered

EEM applet in Example 29-4.

To see the contents of a Tcl script

that resides in flash memory, issue

the more command followed by the

file location and filename.

The more command can be used to

view all other text-based files stored

in the local flash memory as well.

11© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Embedded Event Manager

EEM Summary

The value in using automation and configuration management tools is the ability to move more

quickly than is possible with manual configuration.

Automation helps ensure that the level of risk due to human error is reduced by using proven

automation methods.

The following are some of the most common and repetitive configurations for which network

operators leverage automation tools to increase speed and consistency:

• Device name/IP address

• Quality of service

• Access list entries

• Usernames/passwords

• SNMP settings

• Compliance

12© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation
Tools

• This section covers a number of agent-based tools as well as some of the key

concepts to help network operators decide which tool best suits their environment and

business use cases.

13© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet

• Puppet is a robust configuration management and automation tool. Puppet works with many

different vendors and is a commonly used tools used for automation.

• Puppet can be used during the entire lifecycle of a device, including initial deployment,

configuration management, and repurposing and removing devices in a network.

• Puppet uses a puppet master (server) to communicate with devices that have the puppet

agent (client) installed locally on the device.

• Changes and automation tasks are executed within the puppet console and then shared

between the puppet master and puppet agents.

• These changes or automation tasks are stored in the puppet database (PuppetDB) so that

the tasks can be saved to be pushed out to the puppet agents at a later time.

14© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet (Cont.)

Figure 29-2 illustrates the communications path between the puppet master and the puppet

agents, as well as the high-level architecture. The solid lines show the primary communications

path, and the dotted lines indicate optional high availability.

15© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet (Cont.)

• Puppet agents communicate to the puppet master by using different TCP connections. TCP

ports uniquely represent a communications path from an agent running on a device or node.

• Puppet can periodically verify the configuration on devices. This can be set to any frequency

that the network administrator deems necessary. If a configuration is changed, it can be

alerted on, and automatically put back to the previous configuration.

• There are three different installation types with Puppet. Table 29-3 describes the scale

differences between the different installation options.

Installation Type Scale

Monolithic Up to 4000 nodes

Monolithic with compile masters 4000 to 20,000 nodes

Monolithic with compile masters and

standalone PE-PostgreSQL

More than 20,000 nodes

Table 29-3 Puppet Installation Modes

16© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet (Cont.)

• The recommended deployment is a monolithic installation, which supports up to 4000

nodes. In a very large scale environment, best practices are high availability and centralized

management. Administrators may need a master of masters (MoM) to manage the

distributed puppet masters and their associated databases.

• Large deployments also need compile masters, which are load-balanced Puppet servers.

Figure 29-3 shows a typical large-scale enterprise deployment model of Puppet and its

associated components.

17© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet Modules

Puppet modules contain these components:

• Manifests

• Templates

• Files

Manifests are the code that configures the clients or nodes running the puppet agent.

Manifests are pushed to the devices using SSL and require certificates to ensure the security of

communications between the puppet master and the puppet agents.

Manifests can be saved as individual files and have a file extension .pp.

One module called cisco_ios, contains many manifests and leverages SSH to connect to

devices.

18© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet Manifest

• Example 29-6 shows an example of a manifest file, named NTP_Server.pp, that configures

a Network Time Protocol (NTP) server on a Cisco Catalyst device.

• This example shows that the NTP server IP address is configured as 1.2.3.4, and it uses

VLAN 42 as the source interface. The line ensure => ‘present’ means that the NTP server

configuration should be present in the running configuration of the Catalyst IOS device on

which the manifest is running.

19© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Puppet Manifest (Cont.)

• Puppet leverages a domain-specific language (DSL) as its “programming language.” It is

based on the Ruby language.

• Example 29-7 shows a manifest file called MOTD.pp that is used to configure a message-of-

the-day (MOTD) banner on Catalyst IOS devices.

20© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Chef

• Chef is an open source configuration management tool. Chef is written in Ruby and Erlang,

using Ruby for writing code within Chef.

• Configuration management tools function in two different types of models: push and pull.

• Chef is similar to Puppet in several ways:

• Both have free open source versions available

• Both have paid enterprise versions available

• Both manage code that needs to be updated and stored

• Both manage devices or nodes to be configured

• Both leverage a pull model

• Both function as a client/server model

21© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Chef’s Structure

• Chef’s structure, terminology, and core components are different from those of Puppet.

• Figure 29-4 illustrates the high-level architecture of Chef and the communications path

between the various areas within the Chef environment.

Figure 29-4

High-Level Chef Architecture

22© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Chef Components

Although the core concepts of Puppet and Chef are similar, the terminology differs. Whereas

Puppet has modules and manifests, Chef has cookbooks and recipes. Table 29-4 compares

the components of Chef and Puppet and provides a brief description of each component.

Chef Components Puppet Components Description

Chef server Puppet master Server/master functions

Chef client Puppet agent Client/agent functions

Cookbook Module Collection of code or files

Recipe Manifest Code being deployed to make configuration

changes

Workstation Puppet console Where users interact with configuration

management tools and create code

Table 29-4 Puppet and Chef Comparison

23© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Chef Components (Cont.)

• Code is created on the Chef workstation. This code is stored in a file called a recipe

• Once a recipe is created on the workstation, it must be uploaded to the Chef server in

order to be used in the environment. knife is the name of the command-line tool used to

upload cookbooks to the Chef server.

• The command to execute an upload is knife upload cookbookname.

• The Chef server can be hosted locally on the workstation, hosted remotely on a server, or

hosted in the cloud.

There are four types of Chef server deployments:

• Chef Solo - The Chef server is hosted locally on the workstation.

• Chef Client and Server -This is a typical Chef deployment with distributed components.

• Hosted Chef - The Chef server is hosted in the cloud.

• Private Chef - All Chef components are within the same enterprise network.

24© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Chef Server

• The Chef server sits in between the workstation and the nodes. All cookbooks are

stored on the Chef server which holds all the tools necessary to transfer the node

configurations to the Chef clients.

• OHAI collects the current state of a node to send the information back to the Chef

server through the Chef client service. The Chef server then checks to see if there

is any new configuration that needs to be on the node by comparing the

information from the OHAI service to the cookbook or recipe.

• When a node needs a recipe, the Chef client service handles the communication

back to the Chef server to signify the node’s need for the updated configuration or

recipe.

25© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

Recipe File

Example 29-8 shows a recipe file constructed

in Ruby.

26© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

SaltStack Overview

• SaltStack is built on Python with a Python interface so a user can program directly to

SaltStack by using Python code.

• However, most of the instructions or states that get sent out to the nodes are written in

YAML or a DSL. These are called Salt formulas.

• Another key difference from Puppet and Chef is SaltStack’s overall architecture. SaltStack

uses systems, which are divided into various categories. SaltStack has masters and

minions.

• SaltStack uses a distributed messaging platform called 0MQ (ZeroMQ). SaltStack is an

event-driven technology that has components called reactors and beacons. A reactor lives

on the master and listens for any type of changes in the node or device that differ from the

desired state or configuration.

• Beacons live on minions. If a configuration changes on a node, a beacon notifies the reactor

on the master. This is the remote execution system and it helps determine whether the

configuration is in the appropriate state on the minions. These actions are called jobs which

when executed can be stored in an external database.

27© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

SaltStack Overview (Cont.)

• SaltStack uses pillars and grains to control state and send configuration changes. SaltStack

grains are run on the minions to gather system information to report back to the master. This

information is typically gathered by the salt-minion daemon. Grains can provide specifics to

the master about the host.

• Pillars store data that a minion can retrieve from the master. Minions can be assigned to

pillars.

• Data can be stored for a specific node inside a pillar, keeping it separate from any other

node that is not assigned to this particular pillar. Confidential data can be secured and only

shared with assigned minions.

28© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

SaltStack Architecture
• SaltStack can scale to

a very large number of

devices. SaltStack also

has an enterprise

version and a GUI

called SynDic.

• Figure 29-5 shows the

overall architecture of

SaltStack and its

associated

components.

29© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agent-Based Automation Tools

SaltStack CLI

• SaltStack has its own DSL. The

SaltStack command structure contains

targets, commands, and arguments.

• The target is the desired system that

the command should run.

• The command structure uses the

module.function syntax followed by the

argument.

• An argument provides detail to the

module and function that is being

called on in the command.

• Figure 29-6 shows the correct

SaltStack syntax as well as a

command called cmd.run.

30© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

• This section covers a variety of agentless tools as well as some of the key concepts to

help network operators decide which tool best suits their environment and business

use cases.

31© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Ansible Overview

• Ansible is an automation tool that is

capable of automating cloud

provisioning, deployment of

applications, and configuration

management.

• Ansible is agentless, so no software

needs to be installed on the client

machines. Ansible communicates using

SSH. Ansible can use built-in

authorization escalation when it needs

to raise the level of administrative

control.

• Ansible sends all requests from a

control station. Figure 29-8 illustrates

the Ansible workflow.

32© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Ansible Playbook Components
• Ansible uses playbooks to

deploy configuration changes

or retrieve information from

hosts within a network. An

Ansible playbook is a

structured sets of instructions.

An Ansible playbook contains

multiple plays, and each play

contains the tasks that each

player must accomplish in

order for the particular play to

be successful.

• Table 29-5 describes the

components used in Ansible

and provides some commonly

used examples of them.

Components Description Use Case

Playbook A set of plays for

remote systems

Enforcing

configuration and/or

deployment steps

Play A set of tasks

applied to a single

host or group of

hosts

Grouping a set of

hosts to apply policy

or configuration to

them.

Task A call to an Ansible

module

Logging in to a

device to issue a

show command to

retrieve output.

33© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Ansible Playbooks in YAML

• Ansible playbooks are written using

YAML (Yet Another Markup

Language). Ansible YAML files

usually begin with a series of three

dashes (---) and end with a series of

three periods (…). Example 29-9

shows a YAML file that contains a list

of musical genres.

• YAML uses dictionaries that are

similar to JSON dictionaries as they

also use key/value pairs. Example

29-10 shows a YAML dictionary

containing an employee record.

34© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Ansible CLI Commands

Ansible has a CLI tool that can be used to run playbooks or ad hoc CLI commands on

targeted hosts. This tool has very specific commands that you need to use to enable

automation. The table below shows the most common Ansible CLI commands and

associated use cases.

CLI Command Use Case

ansible Runs modules against targeted hosts

ansible-playbook Runs playbooks

ansible-docs Provides documentation on syntax and parameters in the CLI

ansible-pull Changes Ansible clients from the default push model to the pull model

ansible-vault Encrypts YAML files that contain sensitive data

35© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Ansible Configuration Example
• Example 29-14 shows an alternative

version of the ConfigureInterface.yaml

playbook named EIGRP_Configuration_

Example.yaml, with EIGRP added,

along with the ability to save the

configuration by issuing a “write

memory.”

• These tasks are accomplished by

leveraging the ios_command module in

Ansible. This playbook adds the

configuration shown here to the

CSR1KV-1 router.

36© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Puppet Bolt

• Puppet Bolt allows you to leverage the power of Puppet without having to install a puppet

master or puppet agents on devices or nodes.

• It connects to devices by using SSH or WinRM connections. Puppet Bolt is an open

source tool that is based on the Ruby language and can be installed as a single package.

• Puppet Bolt allows you to execute a change or configuration immediately and then

validate it. There are two ways to use Puppet Bolt:

• Orchestrator-driven tasks - Orchestrator-driven tasks can leverage the Puppet

architecture to use services to connect to devices. This design is meant for large-

scale environments.

• Standalone tasks - Standalone tasks are for connecting directly to devices or nodes

to execute tasks and do not require any Puppet environment or components to be

set up in order to realize the benefits and value of Puppet Bolt.

37© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Puppet Bolt Command Line

• Individual commands can be run

from the command line by using

the command bolt command run

command name followed by the list

of devices to run the command

against.

• After a script is built, execute it

from the command line against the

remote devices that need to be

configured, using the command

bolt script run script name

followed by the list of devices to

run the script against. Figure 29-14

shows a list of some of the

available commands for Puppet

Bolt.

38© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Puppet Bolt Command Line

• Puppet Bolt tasks use an API to retrieve data between Puppet Bolt and the remote device.

• Tasks are part of the Puppet modules and use the naming structure

modulename::taskfilename.

• Tasks can be called from the command line much like commands and scripts. You use the

command bolt task run modulename::taskfilename to invoke these tasks from the command

line.

• The modulename::taskfilename naming structure allows the tasks to be shared with other

users on Puppet Forge.

• A task is commonly accompanied by a metadata file that is in JSON format. A JSON

metadata file contains information about a task, how to run the task, and any comments

about how the file is written.

39© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

SaltStack Salt SSH (Server-Only Mode)

• SaltStack offers an agentless option called Salt SSH that allows users to run Salt

commands without having to install a minion on the remote device or node. The main

requirements to use Salt SSH are that the remote system must have SSH enabled and

Python installed.

• Salt SSH can work in conjunction with the master/minion environment, or it can be used

completely agentless across the environment. By default, Salt SSH uses roster files to

store connection information for any host that doesn’t have a minion installed. Example

29-16 shows the content structure of this file.

40© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Agentless Automation Tools

Comparing Tools

Table 29-7 provides a high-level comparison of the tools covered in this chapter.

Factor Puppet Chef Ansible SaltStack

Architecture Puppet masters

and puppet agents

Chef server and

Chef clients

Control station and

remote hosts

Salt master and

minions

Language Puppet DSL Ruby DSL YAML YAML

Terminology Modules and

Manifests

Cookbooks and

recipes

Playbooks and

plays

Pillars and grains

Support for large-

scale deployments

Yes Yes Yes Yes

Agentless version Puppet Bolt N/A Yes Salt SSH

41© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Prepare for the Exam

42© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Prepare for the Exam

Key Topics for Chapter 29

Description

EEM applets and configuration

Puppet

Chef

SaltStack (agent and server mode)

Ansible

Puppet Bolt

SaltStack SSH (server-only mode)

High-Level Configuration Management and

Automation Tool Comparison

43© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Prepare for the Exam

Key Terms for Chapter 29
Term

Cookbooks

Embedded Event Manager (EEM)

Grain

Manifest

Module

Pillar

Play

Playbook

Recipe

Tcl

	Chapter 29: Introduction to Automation Tools
	Chapter 29 Content
	Embedded Event Manager
	Embedded Event Manager EEM Event Detectors
	Embedded Event Manager EEM Applets
	Embedded Event Manager Debugging Output
	Embedded Event Manager CLI Patterns
	Embedded Event Manager EEM Environment Values
	Embedded Event Manager Tcl Scripts
	Embedded Event Manager Script Contents
	Embedded Event Manager EEM Summary
	Agent-Based Automation Tools
	Agent-Based Automation Tools Puppet
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet (Cont.)
	Agent-Based Automation Tools Puppet Modules
	Agent-Based Automation Tools Puppet Manifest
	Agent-Based Automation Tools Puppet Manifest (Cont.)
	Agent-Based Automation Tools Chef
	Agent-Based Automation Tools Chef’s Structure
	Agent-Based Automation Tools Chef Components
	Agent-Based Automation Tools Chef Components (Cont.)
	Agent-Based Automation Tools Chef Server
	Agent-Based Automation Tools Recipe File
	Agent-Based Automation Tools SaltStack Overview
	Agent-Based Automation Tools SaltStack Overview (Cont.)
	Agent-Based Automation Tools SaltStack Architecture
	Agent-Based Automation Tools SaltStack CLI
	Agentless Automation Tools
	Agentless Automation Tools Ansible Overview
	Agentless Automation Tools Ansible Playbook Components
	Agentless Automation Tools Ansible Playbooks in YAML
	Agentless Automation Tools Ansible CLI Commands
	Agentless Automation Tools Ansible Configuration Example
	Agentless Automation Tools Puppet Bolt
	Agentless Automation Tools Puppet Bolt Command Line
	Agentless Automation Tools Puppet Bolt Command Line
	Agentless Automation Tools SaltStack Salt SSH (Server-Only Mode)
	Agentless Automation Tools Comparing Tools
	Prepare for the Exam
	Prepare for the Exam Key Topics for Chapter 29
	Prepare for the Exam Key Terms for Chapter 29
	Slide 44

