NI
CISCO

Tunneling, IPSec,

VRF

Matej Grégr, mgregr@fit.vut.cz

Tunneling

.
What Is Tunneling?

= Many times it's useful to create “illusion” of the new network
above the existing one. Here are some motivations:

= Existing network doesn’t recognize protocol which we would need to
transfer across it or service we would like to use

= We would like to use existing network as transport tool but we want
it to be completely invisible from point of view of internal network

= We need to interconnect multiple sites with potentially private IP
address space

= We don't trust existing network and we want to securely transfer
data across it

= Tunneling = technique where packet is reencapsulated into
the new packet

= Former packet becomes payload of new packet and therefore its
content (L3 header) is not in attention of routers

.
Protocols Used in Tunneling

= Passenger protocol

= We would like to transfer datagrams of this protocol inside tunnel
= E.g. IPX, AppleTalk, IPv4, IPv6

*» Encapsulating/Tunneling protocol
= Header of this protocol is prepended before passenger protocol

= [t's used to identify passenger protocol and secure transmission with
authentication, encryption, etc.

= E.g. GRE, IPsec, L2F, PPTP, L2TP

= Carrier protocol

= Existing network uses this protocol for transport and inside it
encapsulating protocol is carried wrapped around passenger
protocol

= E.g. Frame-relay, ATM, Ethernet

Encapsulating Protocols

= Tunneling could be achieved with or even without support
of encapsulating protocol

* Tunneling WITH encapsulating protocol

= Encapsulating protocol wraps around original data and then is
inserted into new packet in carrier protocol

= Authentication support, multiple tunnels between same devices,
encryption

= More features means potentially more overhead
= E.g. GRE, L2TP, PPTP

* Tunneling WITHOUT encapsulating protocol
= Original packet is directly inserted into the new one
= Limited support of advanced tunneling features

= Minimal overhead
= E.g. IP-in-IP, IPv6-in-IPv4

Generic Routing Encapsulation (GRE)

-. IP Transport .

e~

— i

= GRE is encapsulating/tunneling protocol on L3
= Supports multiple passenger protocols
= Creates virtual point-to-point connection between pair of routers
= Uses IP as carrier protocol
= Allows transmission of multicast traffic (NBMA nature)

= GRE was originally invented by Cisco, but nowadays it's open
standard specified in R-C 2784

http://tools.ietf.org/html/rfc2784

GRE Header O

* GRE is stateless without any signalization and traffic flow

control

* GRE doesn’t provide any security (no authentication, no

encryption, no message integrity, no trustworthiness)

= Overhead of GRE tunnel is 24B (20B for new |IPv4 header

and 4B for GRE header)

Default GRE Header

IP GRE IP TCP Data
Identifies the type of payload;
Flags |7 oo N EtherType 0x800 is used for IP

Identifies the presence of
optional header fields

324P 128

GRE Header 2)

* GRE Flags are stored in first 2B of header:
= Checksum Present (bit 0)
= Key Present (bit 2)
= Sequence Number Present (bit 3)
= Version Number (bits 13—-15): GRE has version 0, PPTP has
version 1

* Protocol Type specify type of passenger protocol, usually
it has same value as in field EtherType L2 Ethernet frame

Configuring GRE Tunnel

= GRE tunnels are represented by virtual Tunnel interface on
router

= Tunnel interface must have:
= Own IP address (just like any other interface)
= |P address of sender and receiver of (carrier protocol) packets
= Set proper tunneling mode

= Pair of Tunnel endpoint interfaces on opposite routers must met
this criteria:

= Tunnel endpoints own IP addresses must be in same network segment
— just like any other two directly interconnected interfaces

= |P addresses of sender and receiver must correspond on both

endpoints — IP address of receiver on one side must be IP address of
sender on the opposite site and vice versa

= Tunnel interface bandwidth is by default 9 Kbps
= Surprisingly it’'s recommended to change to reflect real situation ©

GRE Configuration

IP Transport

24P _127

Network

hostname Brno
!
interface Serial0/0
ip address 192.3.4.5 255.255.255.0
no shutdown
!
interface TunnelO
bandwidth 1000
tunnel source s0/0
tunnel destination 223.1.2.3
tunnel mode gre ip ! OPTIONAL
ip address 10.0.0.1 255.255.255.0
]
router ospf 1
network 10.0.0.1 0.0.0.0 area O

hostname Jesenik
'
interface Serial0/0
ip address 223.1.2.3 255.255.255.0
no shutdown
!
interface Tunnel?’
bandwidth 1000
tunnel source s0/0
tunnel destination 192.3.4.5
tunnel mode gre ip ! OPTIONAL
ip address 10.0.0.2 255.255.255.0
'
router ospf 1
network 10.0.0.2 0.0.0.0 area O

Tunnel Interface Status

= State ,,up, protocol up” when using Tunnel interface for
GRE is shown when following conditions are met:

= [nterface has defined source and destination addreses with
commands tunnel source and tunnel destination

= Actual interface with IP address specified in tunnel source isin
state ,up, protocol up“ — source interface is working

= Route to address specified in tunnel destination must be
present in routing table — destination IP must be reachable
according to router's RT

= Whenever GRE Keepalive feature is enabled then opposite side of
tunnel should be able to response to Keepalive packets — transport
network should be able to deliver packets between tunnel endpoints

IPsec for Dummies

IP Security

= |Psec is series of IETF standards describing ways how to secure
transmission of IP packet

= |Psec provides:
= Data confidentiality — Nobody can read it!
= Data integrity — Nobody alter data as they traversed through network!
= Data origin authentication — We know exactly and certainly who send it!
= Anti-replay protection

= |Psec uses 3 supporting protocols

= Internet Key Exchange (IKE) for secure transfer of shared keys and
NAT-T support (UDP ports 500 a 4500)

= Authentication Header (AH) for sender authentication, data integrity and
optional anti-replay protection

= Encapsulating Security Payload (ESP) for data encryption, sender
authentication, data integrity and optional anti-replay protection

AH and ESP

= AH protects packet payload and fixed IP header fields
= Doesn’t provide encryption
= Doesn’t like NAT (because NAT rewrites IP headers)

= ESP protects payload with encryption
= Doesn’t secure IP header
= Authentication is provided optionally

= AH is nowadays used rarely (even ASA doesn’t support
AH), on the other hand ESP is used very often

= AH and ESP could be used simultaneously

IPsec Modes of Operation (1)

Untrusted Network

Original Frame | L2 | IP | L4 Payload

ESP
Transport Mode | L2 | IP AH L4 Payload

New | ESP

IP AH IP L4 Payload

Tunnel Mode L2

= Transport Mode
= Original header is used — routing is intact
= Only the payload of the IP packet is usually encrypted and/or authenticated

= Transport mode is used on Cisco router only when router itself is sender of
packet

* Tunnel Mode
= Entire IP packet is encrypted and/or authenticated
= Adds new IP header

IPsec Modes of Operation 2)

Before| Original IP
ESP| header CP | Data

Trans rt Ol’igil"lal lP ESP ESP ESP
M':ie header header TcP LI trailer authentication
: | e @NCTYPLEd -
| g authenticated ——————

ESP ESP

Tunnel| New IP | == o Original IP TCP
Mode | header | || header trailer authentication

: 1— encrypted —
- authenticated _>

Nested AH ESP TCP ESP

ESP in AH IP header header header Data trailer
€ encrypted ————
- authenticated >

Tunnel Now IP header

Original IP header| yep Data
Mode (any options)

(any options)

| - Authenticated except for MULADIE e——
: fields in the new IP header :

Security Association

= Security Association (SA) is a complete list of negotiated
parameters between |IPsec peers

= SA contains following operating information
= How is authentication of peers done?
= In which operational mode should IPsec work?
= Which algorithm and key is used for data encryption?
= Which algorithm is used for data integrity?
= How and how often should be keys replenished?

= |ISAKMP (IKE) is responsible for creation and maintenance
SA between peers

IPsec Tunnel Creation
Host A

Host B

Router A Router B

1. Host A sends interesting traffic to Host B.

2. Routers A and B negotiate an IKE Phase 1 session.

kesn [ikEPhaset ll KESA_

3. Routers A and B negotiate an IKE Phase 2 session.

IPsec SA < IKE Phase 2 > IPsec SA

4. Information is exchanged via the IPsec tunnel.

— ti———

5. The IPsec tunnel is terminated.

IKE Phase 1)

= |KE Phase 1 creates secure channel for IPsec peers authentication

* |IKE Phase 1 has three steps
1. Negotiating ISAKMP policies
2. Diffie-Hellman key exchange
3. Peers authentication

1. Negotiating ISAKMP policies
= Which encryption algorithm to use?
= Which hashing algorithm to use?
= Which Diffie-Hellman group?
= How to authenticate peer?

3. Peers authentication

= According to way negotiated in Step 1 (pre-shared, RSA nonce, RSA
signature)

= Properties of IPsec tunnel itself are not negotiated, this is done in IKE Phase 2

IKE Phase 1 2)

1. Step

2. Step

Host A

=

10.0.1.3

Router A

Router B

&5

Negotiate IKE Proposals

Host B

10.0.2.3

>

-

IKE Policy 10
DES
MD5

pre-share
DH1
lifetime

IKE Policy 20
3DES
SHA
pre-share
DH1
lifetime

User A

Public key B
+ Private key A

Shared secret

key (BA)

IKE policy sets

IKE Policy 15
DES
MD5

pre-share
DH1
lifetime

User B
Public Key A

+ Private Key B

Shared secret
key (AB)

Protocol Messages

Data Traffic

Pay to User A
$100.00

One Hundred and
xx/100 Dollars

4ehIDx67NMop9eR
U7910PotVBn45TR

Protocol Messages
Data Traffic

| —>|Pay to User A
$100.00

xx/100 Dollars

1 One Hundred and

h

| 4ehIDx67NMop9eR
Internet U78I0PotVBn45TR

S

-
IKE Phase 2

*|n IKE Phase 2 properties of IPsec tunnel between peers
are negotiated

= Which protocol to use — AH, ESP, AH+ESP?

= Which encryption algorithm to use?

= Which hashing algorithm to use?

= Which operational mode of IPsec to use?

= What are keys used for encryption and decryption?
= What is a lifetime of this negotiated properties?

= First four properties are called transform set (TS)

.
Configuring of IPsec

= Successful implementation of IPsec consists of:
= Create at least one ISAKMP policy for IKE Phase 1
= Create at least one transform set for IKE Phase 2
= Create crypto map and ACL describing interesting traffic
= Apply crypto map on egress interface

Configuring ISAKMP Policy

= Encryption: 3DES
= Alternatives: DES, AES

crypto isakmp policy 1

encr 3des = Hash: MD5

hash md5 = Alternatives: SHA
authentication pre-share = Authentication: pre-shared key
group 2 = Alternatives: RSA based

lifetime 3600
exit
crypto isakmp key 0O HESLO addr 192.0.2.254

= DH group: 2 (1024Db)
= Alternatives: 1 (768b), 5 (1536b)
= Lifetime: 3600s

= Pre-shared key for peer with
address 192.0.2.254

Configuring Transform Set

= Transform set defines
= Usage of AH and/or ESP
= Encryption algorithm and length of key
= Hashing algorithm
= Operational mode — either transport or tunnel

= Transform sets are identified by their names
= Configuration snippet:

crypto ipsec transform-set AH-ESP-3DES-SHA ah-sha-hmac esp-3des
crypto ipsec transform-set ESP-AES-SHA esp-aes 256 esp-sha-hmac

Creation of Crypto Map

= Crypto map bonds together:
= |Psec peers
= ACL matching exact traffic to be encrypted between those peers
= Target transform set to use
= Way how to exchange keys (either manually or with support of ISAKMP)
= Lifetime of SA and keys

= Crypto map must minimally consists of...
= Peer definition
= ACL reference
= Transform set reference

= ACL defines which packets should be passed through IPsec tunnel

= Usually statement in form “from our network to peer’s network’
= Stay away from usage statement with any!

Configuring Crypto Map

= Example:

= Block 10: Lifetime is 10 000 KB or 1800 s, two alternative TS,
newly generated keys with DH group 5

= Block 20: Minimal configuration with one TS

crypto map CM-S0/0 10 ipsec-isakmp ! Prvy blok, ¢éislo 10
set peer 1.2.3.4

set security-association lifetime kilobytes 10000

set security-association lifetime seconds 1800

set transform-set ESP-AES-SHA AH-ESP-3DES-SHA

set pfs groupb

match address 100

crypto map CM-S0/0 20 ipsec-isakmp ! Druhy blok, ¢éislo 20
set peer 5.6.7.8

set transform-set ESP-AES-SHA

match address 110

interface Serial 0/0
crypto map CM-S0/0

Final IPsec Configuration

crypto isakmp policy 1
encr 3des
hash md5

authentication pre-share
group 2
lifetime 3600

crypto isakmp key 0 prd31 address 192.0.2.254

crypto ipsec transform-set ESP-AES-SHA esp-aes 256 esp-sha-hmac
crypto map CM-S0/0 10 ipsec-isakmp

set peer 192.0.2.254

set transform-set ESP-AES-SHA

match address 100
crypto map CM-S0/0 local-address Lo0O ! Loopback addresses peering

access-list 100 permit ip 10.0.0.0 0.255.255.255 192.168.10.0 0.0.0.255

int s0/0
crypto map CM-S0/0

-
Final Notes

= ESP has huge issue with NAT hence NAT-T (NAT
Traversal) was specified in RFC 3715

* NAT-T must be allowed through any firewall
= UDP/500
= UDP/4500

Private =~
Network

External ESP Original TCP/UDP
{ M CEGEE S Header | 'IP Header | Header LU ESP Trailer
External UDP ESP Original TCP/UDP
IP Header | Header Header IP Header Header L L Ll ESP Trailer

IPsec
Remote
Client

Private =
Network

Nt

PAT Device

= For mobile clients is recommended new technology
SSLVPN instead of robust and technologically complicated
IPsec

http://tools.ietf.org/html/rfc3715

Secure GRE Tunnels

-
IPsec + GRE?

= On the one hand IPsec is great for secure transfer of data,
BUT...

= Supports only IP
= Older IOSes don’t support IPsec + multicast

= Until recent only way how to configure IPsec was with cryptomap on
egress interface hence it wasn’t possible to...

= ...create Tunnel interface representing IPsec tunnel
= ...activate routing protocol above this tunnel

= On the other hand GRE is great tunneling protocol,
unfortunately its security features are terrible

= Solution = secure GRE tunnels with IPsec

IPsec + GRE!

Tunnel Mode

- J
—_——
Encrypted Payload

Transport Mode
Example IP @GRE IP TCP Data E
(.

J

324P_126

N
Encrypted Payload

= GRE could use IPsec in either tunnel or transport mode

= Transport mode is efficient — saves 20 B on additional IP header
per every packet

= Encapsulation order:
= Passenger protocol - GRE — IPsec — IP

Configuration Ways (1)

= Two existing ways
= Crypto maps (in every |I0S)
= [Psec profiles applied directly on Tunnel interface (only in newer |OSes)

= Crypto map way for IPsec + GRE is similar to IPsec crypto map only...

= ...however it's necessary to be aware of fact that egress interface transmits
GRE packets instead of “plain IP packets”

= Command set peer in crypto map must match with IP address in tunnel
destination command on Tunnel interface

= ACL in crypto map must match GRE packet type with source and
destination address referred in tunnel source resp. tunnel

destination commands

= 12.2(13)T and older I0OSes must have crypto map applied both on Tunnel
interface and also egress interface ()

= All other configuration steps are similar

http://www.cisco.com/en/US/tech/tk827/tk369/technologies_configuration_example09186a0080093f70.shtml

Crypto Map Configuration Example

R4P_127

ol IP Transport

- Network

hostname Jesenik
!
crypto map KRYPTUJ 1 ipsec-isakmp
match address 150
set transform-set TS
set peer 223.1.2.3
!
interface Serial0O/0
ip address 192.3.4.5 255.255.255.0
crypto map KRYPTUJ
!
interface TunnelO
tunnel source s0/0
tunnel destination 223.1.2.3
ip address 10.0.0.1 255.255.255.0
crypto map KRYPTUJ ! Unnecessary on 12.2(13)T and newer
1

access-list 150 permit gre host 192.3.4.5 host 223.1.2.3

Configuration Ways 2)

= Newer |OSese support more convenient |IPsec profile way with use of:
= |Psec profiles
= Tunnel interface command tunnel protection

= [Psec profile is simplified version of crypto map
= without match address for ACL
= without set peer

= On Tunnel interface exists command tunnel protection that
bonds tunnel with IPsec profile

= With this configuration way there’s no need to create crypto map and

ACL

= All other configuration steps are still necessary — defining ISAKMP policies,
pre-shared password, transform-sets

= Be aware — GRE Keepalives feature isn’t supported when using IPsec
profiles ()

http://www.cisco.com/en/US/tech/tk827/tk369/technologies_tech_note09186a008048cffc.shtml

IPsec Profiles Configuration Example

: IP Transport \
- Network

hostname Jesenik

!

crypto ipsec profile KRYPTUJ

set transform-set TS

!

interface Serial0/0

ip address 192.3.4.5 255.255.255.0
]
interface Tunnel0

tunnel source s0/0

tunnel destination 223.1.2.3
tunnel protection ipsec profile KRYPTUJ
ip address 10.0.0.1 255.255.255.0

R4P_127

-
Useful Commands

show crypto ipsec

show crypto session

clear crypto session

debug crypto isakmp
debug crypto ipsec

VREF is a technology for creating separate virtual routers on a single physical router.
VRF-Lite provides VRF without MPLS. Router interfaces, routing tables, and forwarding
tables are isolated on an instance-by-instance basis and therefore prevent traffic from
one VREF instance from interfering with another VRF instance.

VREF is an essential component of the MPLS L3VPN architecture and provides
increased router functionality through segmentation in lieu of using multiple devices.
This section introduces you to VRF and demonstrates how you can configure and verify
VRF-Lite in a Cisco network.

VRF-Lite Overview

By default, all router interfaces, the

. - &) &z
routing table, anc_j any fqrwardlng IAE',IE 00108 1008008 E"‘d,
tables are associated with the = -W o ==
global VRF instance. 3= - T e pa—

)) — Gil/0 Gil/0 p_ 4
What you've been calling your ==~ -’17216,0,24 - wwmm—/ ——
routing table is actually the routing pu— / 10.0.12.024 100230124 P
. I Gi2/0 172.16.12.0/24 172.16.23.0/24 Gi2/0 l
table of the glOba| VRF instance. Ay 192.168.1.0/24 192.168.12.0/24 192.168.23.0/24 192.168.3.0/24 Y -—
" 4 T —

If you need to divide your router up

into multiple virtual routers, you Mneo | oneen [ewE

In . _’_y Figure 18-1 An Example of Three VRF Instances (from top to bottom: red, green,
can do so by creating additional and blue)

VRF instances, which also creates

additional routing and forwarding

tables.

Consider this scenario: for security reasons, you need to build three different networks so that traffic
in each network is isolated from traffic in the other networks. However, you only want to build a
single physical network to accomplish this. You can do this by using VRF. Figure 18-1 shows a single
physical topology that is divided into three different logically isolated networks.

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances

Example 18-1 shows how the |p vrf Example 18-1 Configuring VRF Instances on R1 with the ip vrf Command
vrf-name command is used on each RL# configure terminal
of the routers to create the VRF z:wnﬁg’# ;‘)’#"f:“
. conrig-vr ex
InStanceS Rl (config)# ip vrf GREEN
Rl (config-vrf)# exit
To verify that the VRF instances are R1(config)# ip vrf BLUE
created, use the show ip vrf
Co;nmand as shown in Examsfle 18- Example 18-2 Verifying Thar the VRF Instances Are Configured on R1
2 for R1. Notice that the Interfaces
. R1# show ip vrf
COIumn IS empty You need to Name Default RD Interfaces
assign interfaces to each of the BLUE cnot set>
VRF instances to separate and OREEN <not set>
. . RED <not set>
isolate the traffic.

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances (Cont.)

Example 18-3 Assigning Interfaces to the VRF Instances with the ip vrf forwarding
Command

To assign an interface to a VRF,
use the ip vrf forwarding vrf-name | ®# contigure terninal
Command |n Interface Conflguratlon Rl (config)# interface gigabitEthernet 0/0

. . Rl (config-if)# ip vrf forwarding RED
mOde! as Shown Inn Example 18- Rl (config-if)# interface gigabitEthernet 1/0
3_ Rl (config-if)# ip vrf forwarding GREEN

Rl (config-if)# interface gigabitEthernet 2/0
Rl (config-if)# ip vrf forwarding BLUE

R1 (config-if)# end

Using the show ip vrf command
again, you can verify that each a4 v hat the Inreraces Are A o
; ; xample 18- erifying That the Interfaces Are Assigned to the Correct
interface has been assigned to the ;.00 0

correct VRF instance, as shown in

Example 18_4 R1# show ip vrf
Name Default RD Interfaces
BLUE <not sets> Gi2/0
GREEN <not set> Gil/o0
RED <not sets> Gio/o0

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances (Cont.)

If a S|ng|e phyS|Ca| Interface IE}:(;;[ZI; 18-5 Creating Subinterfaces on R1 and Assigning Them to the Correct VRF
supports multiple VRF instances, -

the physical interface needs to be i (cont iy sntertace sigabisathermet 3/0.1

brOken |nt0 SUbInterfaceS Rl (config-subif)# ip vrf forwarding RED

Therefore, G|3/O needs to be Rl (config-vrf)# interface gigabitEthernet 3/0.2

Rl (config-subif)# ip vrf forwarding GREEN

broken into subinterfaces.

Rl (config-vrf)# interface gigabitEthernet 3/0.3
Rl (config-subif)# ip vrf forwarding BLUE

Example 18-5 shows how to create o icontg b e
. . show ip vr

the subinterfaces and assign them Name Default RD Interfaces
to the correct VRF instances. It also BLUE <ot set> Gi2/0
shows the use of the show ip vrf o13/0.3

. GREEN <not sets> Gil/0
command to verify that the G13/0.2
interfaces are in the correct VRF RED <ot set> G10/0

Gi3/0.1

instances.

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances (Cont.)

NeXt, you can Configure network Example 18-6 Configuring RI’s Interfaces and Subinterfaces with IP Addresses
addressing on R1. Example 18-6 R1# configure terminal
shows the |IP addressing configuration R1(config)# int gig 0/0
Of eaCh Of the InterfaceS On R1, based Rl(conf?g—Tf)# ip address 10.0.1.1 255.255.255.0
. Rl (config-if)# int gig 1/0
on Flgure 18-1. R1(config-if)# ip address 172.16.1.1 255.255.255.0
Rl (config-if)# int gig 2/0
Notice that the Subinterfaces must be Rl (config-if)# ip address 192.168.1.1 255.255.255.0
. . . Rl (config-if)# int gig 3/0.1
Conflgured,WIth d0t1q encapSUIatlon’ Rl (config-subif)# encapsulation dotlQ 100
or you can't assign an IP address to R1(config-subif)# ip address 10.0.12.1 255.255.255.0
the interface. Also, note that when you R1(config-subif)# int gig 3/0.2
COnflgure R2’S SUbInterfaCGS Rl (config-subif)# encapsulation dotlQ 200
. R1 th d t b Rl (config-subif)# ip address 172.16.12.1 255.255.255.0
ConneCtlng to ’ ey nee O be Rl (config-subif)# int gig 3/0.3
COﬂfIgUl’ed Wlth the same VLAN Rl (config-subif)# encapsulation dotlQ 300
. Rl (config-subif)# ip address 192.168.12.1 255.255.255.0
numobers

You can use the show ip vrf interfaces command to verify the |IP address assigned to the
interface, the VRF instance the interface is in, and whether the interface is up or down.

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

Example 18-8 Verifying the Global Routing Table

As soon as you created the VRF
instance with the ip vrf vrf-name
command, the virtual routing table was
created for the network. You can use
the show ip route command to display
the global routing table, as shown in
Example 18-8.

To view the routing table for a VRF

R1# show ip route

Codes: L - local, C - connected, S - static, R - RIP, M -

OSPF, IA -

mobile, B - BGP
D - EIGRP, EX -
N1 -

E1l -

EIGRP external, O - OSPF inter area

OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
OSPF external type 1, E2 - OSPF external type 2
IS-1IS level-1, L2 -

candidate default, U -

i - IS-IS, su - IS-IS summary, L1 - IS-1IS level-2

ia - IS-IS inter area, * - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP

+ - replicated route, % - next hop override
Gateway of last resort is not set

R1#

instance, use the show ip route vrf vrf-
name command.

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances (Cont.)

Example 18-10 Configuring R2 VRF Instances, Assigning Subinterfaces to VRF
Instances, and Configuring IP Addresses on Subinterfaces

R2# config terminal

R2 (config)# ip vrf RED

R2 (config-vrf)# ip vrf GREEN

R2 (config-vrf)# ip vrf BLUE

R2 (config-vrf)# int gig 3/0.1

R2 (config-subif)# ip vrf forwarding RED

R2 (config-subif)#

R2 (config-subif)# ip address 10.0.12.2 255.255.255.0
) #

R2 (config-subif int gig 3/0.2

encapsulation dotlQ 100

You can now configure R2. Example 18-10 shows the configuration required on R2.

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

Example 18-11 Verifying R2’s Configuration with the show ip vrf interfaces Command R2# show ip route vrf GREEN
and the show ip route vrf Command
Routing Table: GREEN
R2# show ip vrf interfaces 9
...output omitted...
Interface IP-Address VRF Protocol
. Gateway of last resort is not set
Gi3/0.3 192.168.12.2 BLUE up
Gi2/0.3 192.168.23.2 BLUE up
. 172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
Gi3/0.2 172.16.12.2 GREEN up
X C 172.16.12.0/24 is directly connected, GigabitEthernet3/0.2
Gi2/0.2 172.16.23.2 GREEN up
L 172.16.12.2/32 is directly connected, GigabitEthernet3/0.2
Gi3/0.1 10.0.12.2 RED up
C 172.16.23.0/24 is directly connected, GigabitEthernet2/0.2
Gi2/0.1 10.0.23.2 RED up .
L 172.16.23.2/32 is directly connected, GigabitEthernet2/0.2
R2# show ip route vrf RED
R2# show ip route vrf BLUE
Routing Table: RED X
Routing Table: BLUE
...output omitted...
...output omitted...
Gateway of last resort is not set X
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks . .
192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
C 10.0.12.0/24 is directly connected, GigabitEthernet3/0.1 . . .
/ ¥ g / C 192.168.12.0/24 is directly connected, GigabitEthernet3/0.3
L 10.0.12.2/32 is directly connected, GigabitEthernet3/0.1) X)
L 192.168.12.2/32 is directly connected, GigabitEthernet3/0.3
C 10.0.23.0/24 is di tl ted, GigabitEth t2/0.1 . .
/ 8 rectly connecte ga ernet2/ 192.168.23.0/24 is variably subnetted, 2 subnets, 2 masks
L 10.0.23.2/32 is directly connected, GigabitEthernet2/0.1 c 192.168.23.0/24 is directly connected, GigabitEthernet2/0.3
L 192.168.23.2/32 is directly connected, GigabitEthernet2/0.3
R2#

Example 18-11 displays the output of the show ip vrf interfaces command and the
show ip route vrf vif_ name commands to verify that R2 has been configured
correctly.

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

» To verify connectivity when using VRF instances, you must specify the VRF instance with the
ping command. If you do not, the global routing table is used instead of the VRF routing table.

Example 18-14 Verifying Connecting with the ping Command

R1# ping 10.0.12.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.12.2, timeout is 2 seconds:
Success rate is 0 percent (0/5)

R1# ping vrf GREEN 10.0.12.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.12.2, timeout is 2 seconds:
Success rate is 0 percent (0/5)

R1# ping vrf RED 10.0.12.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.12.2, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 44/49/60 ms

Implementing and Verifying VRF-Lite
Creating and Verifying VRF Instances (Cont.)

Example 18_1 5 ShOWS the Output Of Example 18-15 Qsing the show ip route vrf RED Command to Verify the Contents of
the RED VRF routing table. At this rhe RED YR Rowrime Tabte

point, you have only directly connected
and local routes. For all the routers to Routing Table: RED
learn about all the other networks, you oonear omrred.
can use static or dynamic routing. The
following examples use EIGRP as the
dynamic routing protocol to provide full
connectivity for each of the VRF
instances.

R1# show ip route vrf RED

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
10.0.1.0/24 is directly connected, GigabitEthernet0/0
10.0.1.1/32 is directly connected, GigabitEthernet0/0
10.0.12.0/24 is directly connected, GigabitEthernet3/0.1

[T e

10.0.12.1/32 is directly connected, GigabitEthernet3/0.1

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

To configure EIGRP for multiple VRF
instances, you use EIGRP named
configuration mode because it permits you to
create multiple address families, as shown in
Example 18-16.
Enter the EIGRP named conflguratlon
mode by using the router eigrp name
command in global configuration mode.

* Next, create an address family for each of
the VRF instances. You accomplish this
with the address-family ipv4 vrf vrf-name
autonomous-system as-number
command.

« Then specify any EIGRP configuration
commands that are needed for your
scenario. In this case, you are enabling the
routing process on only certain interfaces.

Example 18-16 Configuring EIGRP for Multiple VRF Instances

R1# configure terminal

Rl (config)# router eigrp VRFEXAMPLE

Rl (config-router)# address-family ipv4 vrf RED autonomous-system 10
Rl (config-router-af)# network 10.0.1.1 0.0.0.0

Rl (config-router-af)# network 10.0.12.1 0.0.0.0

Rl (config-router)# address-family ipv4 vrf GREEN autonomous-system 172
Rl (config-router-af)# network 172.16.1.1 0.0.0.0

Rl (config-router-af)# network 172.16.12.1 0.0.0.0

Rl (config-router)# address-family ipv4 vrf BLUE autonomous-system 192
Rl (config-router-af)# network 192.168.1.1 0.0.0.0

Rl (config-router-af)# network 192.168.12.1 0.0.0.0

Rl (config-router-af)# end

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

Example 18-17 Verifying Thar rbhe Interfaces Are Parricipating in the EIGRP Process for

To verify that the interfaces are Each VRF

partICIDatlng In the EIGRP process R1# show 1p eigrp vrf RED interfaces

for the correct VRF inStanCG, use EIGRP-IPv4 VR (VRFEXAMPLE) Address-Family Interfaces for AS(10)

the show ip eigrp vrf vif-name VRF (RED)

- t rf (j Xmit Queue PeerQ Mean Pacing Time Multicast Pending

Interraces command. Interface Peers Un/Reliable Un/Reliable SRTT Un/Reliable Flow Timer Routes
Gio/o0 0 0/0 0/0 0 0/0 0 0
Gi3/0.1 0 0/0 0/0 0 0/0 0 0

R1# show 1p eilgrp vrf GREEN interfaces
EIGRP-IPv4 VR (VRFEXAMPLE) Address-Family Interfaces for AS(172)

VRF (GREEN)
Xmit Queue PeerQ Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable Un/Reliable SRTT Un/Reliable Flow Timer Routes
Gii/o 0 0/0 0/0 0 0/0 0 0
Gi3z/0.2 0 0/0 0/0 0 0/0 0 0

R1# show 1p eigrp vrf BLUE interfaces
EIGRP-IPv4 VR (VRFEXAMPLE) Address-Family Interfaces for AS(192)

VRF (BLUE)
Xmit Queue PeerQ Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable Un/Reliable SRTT Un/Reliable Flow Timer Routes
Gi2/0 0 0/0 0/0 0 0/0 0 0

Gi3/0.3 0 0/0 0/0 0 0/0 0 0

Implementing and Verifying VRF-Lite

Creating and Verifying VRF Instances (Cont.)

When all the other routers have been
configured for EIGRP, you can verify
neighbor adjacencies by using the
show ip eigrp vrf vrf-name
neighbors command. As before,
because you are dealing with multiple
VREF instances, you will notice that
each show command in Example 18-
18 displays only the neighbors that
are within that VRF instance.

By using the ping vrf vif-name ipv4-
address command, as shown in
Example 18-20, you can verify that
connectivity exists from R1 to R3.

Example 18-18 Verifying EIGRP Neighbors for Each VRF Instance with the show ip

eigrp vrf vrf-name neighbors Command

R1# show ip eigrp vrf RED neighbors
EIGRP-IPv4 VR (VRFEXAMPLE) Address-Family Neighbors for AS(10)

VRF (RED)
H Address Interface Hold Uptime SRTT
(sec) (ms)
0 10.0.12.2 Gi3/0.1 13 00:02:31 48

R1# show ip eigrp vrf GREEN neighbors

EIGRP-IPv4 VR (VRFEXAMPLE) Address-Family Neighbors for AS(172)
VRF (GREEN)

H Address

Interface Hold Uptime SRTT

(sec) (ms)

Example 18-20 Verifying VRF Connectivity from R1 to R3

RTO Q Seq
Cnt Num
288 0 7

RTO Q Seq
Cnt Num

R1# ping vrf RED 10.0.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.3.3, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max =

R1# ping vrf GREEN 172.16.3.3

68/91/112 ms

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.3.3, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/71/80 ms
R1# ping vrf BLUE 192.168.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.3, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max =

R1#

64/68/72 ms

NI
CISCO

Slides adapted by and Matéj Grégr
partially from official course materials
but the most of the credit goes to CCIE#23527 Ing. Peter Paluch, Ph.D.

Last update: 2023-06-12

mailto:ivesely@fit.vutbr.cz?subject=C1P%20-%20Module%206

