

Chapter 7: Advanced OSPF

Instructor Materials

CCNP Enterprise: Advanced Routing

Chapter 7 Content

This chapter covers the following content:

- Link-State Advertisements This section explains how Open Shortest Path First (OSPF) stores, communicates, and builds the topology from link-state advertisements (LSAs).
- **OSPF Stubby Areas** This section explains the method OSPF provides for filtering external routes while still providing connectivity to them.
- **OSPF Path Selection -** This section explains how OSPF makes path selection choices for routes learned within the OSPF routing domain.
- **Summarization of Routes -** This section explains how network summarization works with OSPF.
- **Discontiguous Network** This section demonstrates a discontiguous network and explains why it cannot distribute routes to all areas properly.
- Virtual Links This section explains how OSPF repairs a discontiguous network.

- An OSPF link-state advertisement (LSA) contains the link state and link metric to a neighboring router.
- Received LSAs are stored in a local database called the link-state database (LSDB); the LSDB advertises the link-state information to neighboring routers exactly as the original advertising router advertised it.
- All OSPF routers in the same area maintain a synchronized identical copy of the LSDB for that area.
- The LSDB provides the topology of the network, providing the router a complete map of the network.
- When OSPF neighbors become adjacent, the LSDBs synchronize between the OSPF routers. As an OSPF router adds or removes a directly connected network link to or from its database, the router floods the LSA out all active OSPF interfaces.

The OSPF LSA contains a complete list of networks advertised from that router. OSPF uses six LSA types for IPv4 routing:

- **Type 1, router -** LSAs that advertise network prefixes within an area
- Type 2, network LSAs that indicate the routers attached to broadcast segment within an area
- **Type 3**, **summary -** LSAs that advertise network prefixes that originate from a different area
- Type 4, ASBR summary LSA used to locate the ASBR from a different area
- Type 5, AS external LSA that advertises network prefixes that were redistributed into OSPF
- Type 7, NSSA external LSA for external network prefixes that were redistributed in a local NSSA area

LSA Types 1, 2, and 3 are used for building the SPF tree for intra-area and interarea route routes. LSA Types 4, 5, and 7 are related to external OSPF routes (that is, routes that were redistributed into the OSPF routing domain).

Link-State Advertisements LSA Types (Cont.)

Figure 7-1 shows a packet capture of an OSPF update LSA and outlines the important components of the LSA: the LSA type, LSA age, the sequence, and the advertising router. Because this is a Type 1 LSA, the link IDs add relevance as they list the attached networks and the associated OSPF cost for each interface.

Figure 7-2 shows a sample topology to demonstrate the different LSA types. In this topology:

- R1, R2, and R3 are member (internal) routers.
- R4 and R5 are area border routers (ABRs).
- R6 is the ASBR, which is redistributing the 172.16.6.0/24 network into OSPF.

Figure 7-1 Packet Capture of an LSA Update for the Second Interface

Figure 7-2 LSA Reference Topology for LSAs

Link-State Advertisements LSA Sequences

- OSPF uses the sequence number to overcome problems caused by delays in LSA propagation in a network.
- The LSA sequence number is a 32-bit number used to control versioning. When the originating router sends out LSAs, the LSA sequence number is incremented.
- If a router receives an LSA sequence that is greater than the one in the LSDB, it processes the LSA.
- If the LSA sequence number is lower than the one in the LSDB, the router deems the LSA old and discards it.

Link-State Advertisements LSA Age and Flooding

- Every OSPF LSA includes an age that is entered into the local LSDB that increments by 1 every second.
- When a router's OSPF LSA age exceeds 1800 seconds (that is, 30 minutes) for its networks, the originating router advertises a new LSA with the LSA age set to 0.
- As each router forwards the LSA, the LSA age is incremented with a calculated delay that reflects the link (which is minimal).
- If the LSA age reaches 3600, the LSA is deemed invalid and is purged from the LSDB.
- The repetitive flooding of LSAs is a secondary safety mechanism to ensure that all routers maintain a consistent LSDB within an area.

Every OSPF router advertises a Type 1 LSA. Type 1 LSAs are the essential building blocks in the LSDB. A Type 1 LSA entry exists for each OSPF-enabled link (that is, an interface and its attached networks). Figure 7-3 shows that the Type 1 LSAs are not advertised outside Area 1234, thus making the underlying topology in an area invisible to other areas.

Figure 7-3 Type 1 LSA Flooding in an Area

Link-State Advertisements LSA Type 1 (Cont.)

For a brief summary view of the Type 1 LSAs for an area, look under the Router Link States column within the LSDB, as shown in Example 7-1.

Table 7-2 provides an overview of the fields used within the LSDB output.

Example 7-1 Generic OSPF LSA Output for Type 1 LSAs

R1# show ip	ospf database				
	OSPF Router with 1	ID (192.168	3.1.1) (Process	ID 1)	
	Router Link St	ates (Area	a 1234)		
Link ID	ADV Router	Age	Seq#	Checksum Link co	ount
192.168.1.1	192.168.1.1	14	0x8000006	0x009EA7 1	
192.168.2.2	192.168.2.2	2020	0x8000006	0x00AD43 3	
192.168.3.3	192.168.3.3	6	0x8000006	0x0056C4 2	
192.168.4.4	192.168.4.4	61	0x80000005	0x007F8C 2	

Table 7-2 OSPF LSDB Fields

Field	Description
Link ID	Identifies the object that the link connects to. It can refer to the neighboring router's RID, the IP address of the DR's interface, or the IP network address.
ADV Router	The OSPF router ID for this LSA.
AGE	The age of the LSA on the router on which the command is being run. Values over 1800 are expected to refresh soon.
Seq #	The sequence number for the LSA to protect out-of-order LSAs.
Checksum	The checksum of the LSA to verify integrity during flooding.
Link Count	The number of links on this router in the Type 1 LSA.

Link-State Advertisements Examining Type 1 LSAs

You can examine the Type 1 OSPF LSAs by using the command **show ip ospf database router**, as demonstrated in Example 7-2.

Example 7-2 OSPF Type 1 LSAs for Area 1234

R1# show ip ospf database router

! Output omitted for brevity OSPF Router with ID (192.168.1.1) (Process ID 1)

Router Link States (Area 1234)

LS age: 352 Options: (No TOS-capability, DC) LS Type: Router Links Link State ID: 192.168.1.1 Advertising Router: 192.168.1.1 LS Seq Number: 80000014 Length: 36 Number of Links: 1

Link connected to: a Transit Network (Link ID) Designated Router address: 10.123.1.3 (Link Data) Router Interface address: 10.123.1.1 TOS 0 Metrics: 1

LS age: 381 Options: (No TOS-capability, DC) LS Type: Router Links Link State ID: 192.168.2.2 Advertising Router: 192.168.2.2 LS Seq Number: 80000015 Length: 60 Number of Links: 3

Link connected to: another Router (point-to-point)
(Link ID) Neighboring Router ID: 192.168.4.4
(Link Data) Router Interface address: 10.24.1.1
TOS 0 Metrics: 64

Link connected to: a Stub Network (Link ID) Network/subnet number: 10.24.1.0 (Link Data) Network Mask: 255.255.255.248 TOS 0 Metrics: 64

Link connected to: a Transit Network (Link ID) Designated Router address: 10.123.1.3 (Link Data) Router Interface address: 10.123.1.2 TOS 0 Metrics: 1

Link-State Advertisements LSA Type 1 Neighbor States

Each OSPF-enabled interface is listed under the number of links for each router. Each network link on a router contains the following information, in this order:

- Link type, as shown in Table 7-3, after the Link connected to
- Link ID, using the values based on the link type listed in Table 7-3
- Link data (when applicable)
- Metric for the interface

Description	Link Type	Link ID Value	Link Data
Point-to-point link (IP address assigned)	1	Neighbor RID	Interface IP address
Point-to-point link (using IP unnumbered)	1	Neighbor RID	MIB II IfIndex value
Link to transit network	2	Interface address of DR	Interface IP address
Link to stub network	3	Network address	Subnet mask
Virtual link	4	Neighbor RID	Interface IP address

Table 7-3 OSPF Neighbor States for Type 1 LSAs

During the SPF tree calculation, network link types are one of the following:

- Transit A transit network indicates that an adjacency was formed and that a DR was elected on that link.
- Point-to-point Point-to-point links indicate that an adjacency was formed on a network type that does not use a DR. Interfaces using the OSPF point-to-point network type advertise two links. One link is the point-to-point link type that identifies the OSPF neighbor RID for that segment, and the other link is a stub network link that provides the subnet mask for that network.
- Stub A stub network indicates that no neighbor adjacencies were established on that link. Point-to-point and transit link types that did not become adjacent with another OSPF router are classified as a stub network link type. When an OSPF adjacency forms, the link type changes to the appropriate type: point-to-point or transit.

Link-State Advertisements Visualization of Type 1 LSAs

Figure 7-5 demonstrates the topology built by all routers in Area 1234, using the LSA attributes for Area 1234 from all four routers. Using only Type 1 LSAs, a connection is made between R2 and R4 because they point to each other's RID in the point-to-point LSA.

Figure 7-5 Visualization of Type 1 LSAs

A Type 2 LSA represents a multi-access network segment that uses a DR. The DR always advertises the Type 2 LSA and identifies all the routers attached to that network segment.

If a DR has not been elected, a Type 2 LSA is not present in the LSDB because the corresponding Type 1 transit link type LSA is a stub. Type 2 LSAs are not flooded outside the originating OSPF area in an identical fashion to Type 1 LSAs.

Example 7-3 provides the output for Type 2 LSAs in Area 1234 from the reference topology.

R1# show ip	o ospf database			
! Output om	nitted for brevity			
	OSPF Router with ID	(192.168.1.1) (Process)	ID 1)
	Net Link States	(Area 1234)		
Link ID	ADV Router	Age	Seq#	Checksum
10.123.1.3	10.192.168.3.3	1752	0x80000012	0x00ADC5

Example 7-3 Generic OSPF LSA Output for Type 2 LSAs

Link-State Advertisements LSA Type 2 (Cont.)

To see detailed Type 2 LSA information, you use the command show ip ospf database network. Example 7-4 shows the Type 2 LSA that is advertised by R3 and shows that the link-state ID 10.123.1.3 attaches to R1, R2, and R3 (by listing their RIDs at the bottom). The network mask for the subnet is included in the Type 2 LSA.

ululu cisco

Example 7-4 Detailed Output for OSPF Type 2 LSAs

Link-State Advertisements Visualization of Type 1 and Type 2 LSAs

Figure 7-6 provides a visualization of the Type 1 and Type 2 LSAs; it corresponds with Area 1234 perfectly.

Figure 7-6 Visualization of Area 1234 with Type 1 and Type 2 LSAs

Type 3 LSAs represent networks from other areas. ABRs do not forward Type 1 or Type 2 LSAs into other areas. When an ABR receives a Type 1 LSA, it creates a Type 3 LSA referencing the network in the original Type 1 LSA.

The ABR then advertises the Type 3 LSA into other areas. If an ABR receives a Type 3 LSA from Area 0 (backbone), it regenerates a new Type 3 LSA for the nonbackbone area and lists itself as the advertising router with the additional cost metric.

Figure 7-7 demonstrates the concept of a Type 3 LSA interaction with Type 1 LSAs. Notice that the Type 1 LSAs exist only in the area of origination and convert to Type 3 when they cross the ABRs (R4 and R5).

Figure 7-7 Type 3 LSA Conceptual Diagram

Link-State Advertisements LSA Type 3 (Cont.)

For a summary view of the Type 3 LSAs, look under Summary Net Link States, as shown in Example 7-5.

The Type 3 LSAs show up under the appropriate area where they exist in the OSPF domain.

For example, the 10.56.1.0 Type 3 LSA exists only in Area 0 and Area 1234 on R4. R5 contains the 10.56.1.0 Type 3 LSA only for Area 0, but not for Area 56 because Area 56 has a Type 1 LSA.

Example 7-5	Generic OSPF	LSA Output	for Type 3	LSAs
-------------	--------------	------------	------------	------

			19900 20	
R4# show ip osp	f database			
! Output omitte	d for brevity			
OSP	F Router with ID	(192.168.4.	4) (Process	ID 1)
	Summary Net Lin	k States (Ar	ea 0)	
Link ID	ADV Router	Age	Seq#	Checksum
10.3.3.0	192.168.4.4	813	0x80000013	0x00F373
10.24.1.0	192.168.4.4	813	0x80000013	0x00CE8E
10.56.1.0	192.168.5.5	591	0x80000013	0x00F181
10.123.1.0	192.168.4.4	813	0x80000013	0x005A97
	Summary Net Lin	k States (Are	ea 1234)	
Link ID	ADV Router	Age	Seq#	Checksum
10.45.1.0	192.168.4.4	813	0x80000013	0x0083FC
10.56.1.0	192.168.4.4	813	0x80000013	0x00096B
R5# show ip osp	f database			
! Output omitte	d for brevity			
OSP	F Router with ID	(192.168.5.5	5) (Process	ID 1)
	Summary Net Lin	k States (Are	ea 0)	
Link ID	ADV Router	Age	Seq#	Checksum
10.3.3.0	192.168.4.4	893	0x80000013	0x00F373
10.24.1.0	192.168.4.4	893	0x80000013	0x00CE8E
10.56.1.0	192.168.5.5	668	0x80000013	0x00F181
	192.168.4.4	893	0x80000013	0x005A97
	Summary Net Lin	k States (Are	ea 56)	
Tinh TD	DU Doubou		0	
	ADV Router		Seq#	
	192.168.5.5			
	192.168.5.5			
	192.168.5.5			
10.123.1.0	192.168.5.5	668	0x80000013	0X005797

cisco

Link-State Advertisements LSA Type 3 (Cont.)

To see detailed Type 3 LSA information, you use the **command show ip ospf database summary**. You can restrict the output to a specific LSA by adding the prefix to the end of the command. The advertising router for Type 3 LSAs is the last ABR that advertises the prefix.

The metric in the Type 3 LSA uses the following logic:

• If the Type 3 LSA is created from a Type 1 LSA, it is the total path metric to reach the originating router in the Type 1 LSA.

• If the Type 3 LSA is created from a Type 3 LSA from Area 0, it is the total path metric to the ABR plus the metric in the original Type 3 LSA.

Link-State Advertisements LSA Type 3 (Cont.)

Example 7-6 shows the Type 3 LSA for the Area 56 prefix (10.56.1.0/24) from R4's LSDB. Notice that the metric increases in Area 1234's LSA compared to Area 0's LSA.

Table 7-4 provides an explanation of the fields in a Type 3 LSA.

Table 7-4 Type 3 LSA Fields

Field	Description
Link ID	Network number
Advertising Router	RID of the router advertising the route (ABR)
Network Mask	Prefix length for the advertised network
Metric	Metric for the LSA

Example 7-6 Detailed Output for OSPF Type 3 LSAs

R4# show ip ospf database summary 10.56.1.0

OSPF Router with ID (192.168.4.4) (Process ID 1)

Summary Net Link States (Area 0)

LS age: 754 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links (Network) Link State ID: 10.56.1.0 (summary Network Number) Advertising Router: 192.168.5.5 LS Seg Number: 80000013 Checksum: 0xF181 Length: 28 Network Mask: /24 MTID: 0 Metric: 1

Summary Net Link States (Area 1234)

LS age: 977 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links (Network) Link State ID: 10.56.1.0 (summary Network Number) Advertising Router: 192.168.4.4 LS Seg Number: 80000013 Checksum: 0x96B Length: 28 Network Mask: /24 Metric: 2

Link-State Advertisements Visualization of Type 3 LSAs

Understanding the metric in Type 3 LSAs is an important concept. Figure 7-8 provides R4's perspective of the Type 3 LSA created by ABR (R5) for the 10.56.1.0/24 network. Figure 7-9 provides R3's perspective of the Type 3 LSA created by the ABR (R4) for the 10.56.1.0/24.

Figure 7-8 Visualization of the 10.56.1.0/24 Type 3 LSA from Area 0

Figure 7-9 Visualization of the 10.56.1.0/24 Type 3 LSA from Area 1234

When a route is redistributed into OSPF, the router is known as an autonomous system boundary router (ASBR). The external route is flooded throughout the entire OSPF domain as a Type 5 LSA. Type 5 LSAs are not associated with a specific area and are flooded throughout the OSPF domain.

Figure 7-10 shows R6 redistributing the 172.16.6.0/24 static route into the OSPF domain.

Example 7-7 provides a brief summary view of the Type 5 LSAs under Type 5 AS External Link States.

Figure 7-10 OSPF Type 5 LSA Flooding

R6# show ip osp	of database				
! Output omitte	d for brevity				
	Type-5 AS Exter	nal Link Stat	ces		
Link ID	ADV Router	Age	Seq#	Checksum	Tag
172.16.6.0	192.168.6.6	11	0x80000001	0x000866	0

Link-State Advertisements LSA Type 5 (Cont.)

You can see Type 5 LSAs in detail by using the command **show ip ospf database external**. ABRs only modify the LSA age as the Type 5 LSA propagates through the OSPF domain.

Example 7-8 provides detailed output for the external OSPF LSAs in the OSPF domain.

Table 7-5 provides an explanation of the fields in a Type 5 LSA.

Table 7-5 Type 5 LSA Fields

Field	Description
Link ID	External network number
Network Mask	Subnet mask for the external network
Advertising Router	RID of the router advertising the route (ASBR)
Metric Type	OSPF external metric type (Type 1 O E1 or Type 2 O E2)
Metric	Metric upon redistribution
External Route Tag	32-bit field included with an external route, which is not used by OSPF under normal operations but can be used to communicate AS boundaries or other relevant information to prevent routing loops

Example 7-8 Detailed Output for OSPF Type 5 LSAs

A Type 4 LSA locates the ASBR for a Type 5 LSA. Type 4 LSAs provide a way for routers to locate the ASBR when the router is in a different area from the ASBR. A Type 4 LSA is created by the first ABR, and it provides a summary route strictly for the ASBR of a Type 5 LSA.

The metric for a Type 4 LSA uses the following logic:

- When the Type 5 LSA crosses the first ABR, the ABR creates a Type 4 LSA with a metric set to the total path metric to the ASBR.
- When an ABR receives a Type 4 LSA from Area 0, the ABR creates a new Type 4 LSA with a metric set to the total path metric of the first ABR plus the metric in the original Type 4 LSA.

Figure 7-11 shows how the ABRs (R4 and R5) create Type 4 LSAs for the ASBR (R6).

Figure 7-11 OSPF Type 4 and Type 5 LSA Flooding Within an OSPF Domain

Link-State Advertisements LSA Type 4 (Cont.)

Example 7-9 provides a brief summary view of the Type 4 LSAs for R4 in the LSDB under Summary ASB Link States.

To view the details of the Type 4 LSAs, you use the command **show ip ospf database asbr-summary**. Example 7-10 provides detailed output of the Type 4 LSA on R4.

Example 7-9 Generic OSPF LSA Output for Type 4 LSAs

R4# show ip os	pf database			
! Output omitte	ed for brevity			
	PF Router with I	D (192.168.4.	.4) (Process	ID 1)
	Summary ASB Li	nk States (An	rea 0)	
Link ID	ADV Router	Age	Seq#	Checksum
192.168.6.6	192.168.5.5	930	0x800000F	0x00EB58
	Summary ASB Li	nk States (An	rea 1234)	
Link ID	ADV Router	Age	Seq#	Checksum
192.168.6.6	192.168.4.4	1153	0x8000000F	0x000342

Summary ASB Link States (Area 1234)

LS age: 1262 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 192.168.6.6 (AS Boundary Router address) Advertising Router: 192.168.4.4 Length: 28 Network Mask: /0 MTID: 0 Metric: 2

A Type 7 LSA exists only in NSSAs where route redistribution is occurring. An ASBR injects external routes as Type 7 LSAs in an NSSA. The ABR does not advertise Type 7 LSAs outside the originating NSSA, but it converts the Type 7 LSA into a Type 5 LSA for the other OSPF areas. If the Type 5 LSA crosses Area 0, the second ABR creates a Type 4 LSA for the Type 5 LSA.

Figure 7-12 shows Area 55 as an NSSA and R6 redistributing the 172.16.6.0/24 prefix.

Figure 7-12 OSPF Type 7 LSAs

Link-State Advertisements LSA Type 7 (Cont.)

Example 7-11 provides a brief summary view of the Type 7 LSAs, under Type 7 AS External Link States.

Type 7 LSAs are present only in the OSPF NSSA where redistribution is occurring. Notice that the Type 7 LSA is not present on R4; R4 contains a Type 5 LSA that was created by R5 and the Type 4 LSA (created by R4 for Area 1234).

R5# show ip o	spf database			
! Output omit	ted for brevity			
0	SPF Router with 1	D (192.168	.5.5) (Process	ID 1)
Type-7 AS Ext	ernal Link States	(Area 56)		
	ADV Router	-	-	-
172.16.6.0	192.168.6.6	46	0x8000001	0x00A371 0
I Mating 13		has have		
				the Type-7 LSA for Area 56
! and the T	Type-5 LSA for the Type-5 AS Exte			ses the Type-5 LSA
	TYPE 5 AD EAC	inai bink	Beaces	
Link ID	ADV Router	Age	Seq#	Checksum Tag
172.16.6.0	192.168.5.5	38	0x80000001	0x0045DB
R4# show ip o	spf database			
	ted for brevity			
- 0:	SPF Router with 1	D (192.168	.4.4) (Process	ID 1)
	Summary ASB Li	nk States	(Area 1234)	
Link ID	ADV Router	Age	Seq#	Checksum
192.168.5.5	192.168.4.4	193	0x8000001	0x002A2C
	Type-5 AS Exte	ernal Link	States	
Link ID	ADV Doutor	100	Coat	Cheekaum mag
LINK ID	ADV Router	Age	Seq#	Checksum Tag
170 16 6 0	192.168.5.5	170	0x80000001	0004555

Link-State Advertisements LSA Type 7 (Cont.)

To see the specific Type 7 LSA details, you use the command **show ip ospf database nssaexternal**.

Example 7-12 shows this command executed on R5.

Table 7-6 provides an explanation of the fields in a Type 7 LSA.

Example 7-12 Detailed Output for OSPF Type 7 LSAs

```
R5# show ip ospf database nssa-external
            OSPF Router with ID (192.168.5.5) (Process ID 1)
                Type-7 AS External Link States (Area 56)
  LS age: 122
 Options: (No TOS-capability, Type 7/5 translation, DC, Upward)
  LS Type: AS External Link
 Link State ID: 172.16.6.0 (External Network Number )
  Advertising Router: 192.168.6.6
  LS Seg Number: 80000001
  Checksum: 0xA371
  Length: 36
  Network Mask: /24
        Metric Type: 2 (Larger than any link state path)
       MTID: 0
       Metric: 20
        Forward Address: 10.56.1.6
        External Route Tag: 0
```

Table 7-6 Type 7 LSA Fields

Field	Description
Link ID	External network number
Network Mask	Subnet mask for the external network
Advertising Router	RID of the router advertising the route (ASBR)
Metric Type	OSPF external metric type (Type 1 O N1 or Type 2 O N2)
Metric	Metric upon redistribution
External Route Tag	32-bit field that is included with an external route, which is not used by OSPF itself and can be used to communicate AS boundaries or other relevant information to prevent routing loops

Link-State Advertisements LSA Types Summary

Table 7-7 provides a summary of the OSPF LSAs discussed.

Figure 7-13 shows the network prefixes from the sample topology and the relevant LSAs that are present.

Table 7-7 USPF LSA Type	es
LSA Type	Description
1	Router link
2	Network link
3	Summary link
4	ASBR summary
5	AS external
7	NSSA external

Figure 7-13 Overview of LSA Types from the Sample Topology

T-H-77 OODELOA Tura

OSPF Stubby Areas

- OSPF stubby areas provide a method to filter out external routes and the option to block interarea routes.
- The following sections explain the four types of OSPF stubby areas in more detail:
 - Stub areas
 - Totally stubby areas
 - Not-so-stubby areas (NSSAs)
 - Totally NSSAs

OSPF Stubby Areas

OSPF stub areas prohibit Type 5 LSAs (external routes) and Type 4 LSAs (ASBR summary LSAs) from entering the area at the ABR. RFC 2328 states that when a Type 5 LSA reaches the ABR of a stub area, the ABR generates a default route for the stub via a Type 3 LSA. A Cisco ABR generates a default route when the area is configured as a stub and has an OSPF-enabled interface configured for Area 0. Figure 7-14 demonstrates the concept.

OSPF Stubby Areas OSPF Stub Configuration

Example 7-13 shows the routing tables for R3 and R4 before Area 34 is configured as a stub area.

All routers in the stub area must be configured as stubs, or an adjacency cannot form because the area type flags in the hello packets do not match. An area is configured as a stub with the OSPF process command **area** *area-id* **stub**.

Example 7-14 demonstrates the configuration for R3 and R4 making Area 34 an OSPF stub area.

iiliiilii cisco Example 7-13 Routing Table in Area 1 and Area 2 Without Stub

R3# sho	ow ip route ospf begin Gateway	
! Outpu	ut omitted for brevity	
Gateway	y of last resort is not set	
:	10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks	
AI O	10.12.1.0/24 [110/2] via 10.23.1.2, 00:01:36, GigabitEthernet0/1	
17:	2.16.0.0/24 is subnetted, 1 subnets	
0 E1	172.16.1.0 [110/22] via 10.23.1.2, 00:01:36, GigabitEthernet0/1	
O IA	192.168.1.1 [110/3] via 10.23.1.2, 00:01:36, GigabitEthernet0/1	
0	192.168.2.2 [110/2] via 10.23.1.2, 00:01:46, GigabitEthernet0/1	
0		
0		
0	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0	
R4# sh	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernetO/0	
R4# sh ! Outp	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernetO/0 ow ip route ospf begin Gateway	
R4# sh ! Outp	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernetO/0 ow ip route ospf begin Gateway ut omitted for brevity	
R4# sh ! Outp Gateway	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernetO/0 ow ip route ospf begin Gateway ut omitted for brevity	
R4# sh ! Outp Gateway	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernetO/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set	
R4# sh ! Outp Gatewa	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks	
R4# sh ! Outp Gateway O IA O IA	<pre>192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks 10.12.1.0/24 [110/3] via 10.34.1.3, 00:00:51, GigabitEthernet0/0</pre>	
R4# sh ! Outp Gateway O IA O IA	<pre>192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks 10.12.1.0/24 [110/3] via 10.34.1.3, 00:00:51, GigabitEthernet0/0 10.23.1.0/24 [110/2] via 10.34.1.3, 00:00:58, GigabitEthernet0/0</pre>	
R4# sh ! Outpu Gateway O IA O IA	<pre>192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks 10.12.1.0/24 [110/3] via 10.34.1.3, 00:00:51, GigabitEthernet0/0 10.23.1.0/24 [110/2] via 10.34.1.3, 00:00:58, GigabitEthernet0/0 172.16.0.0/24 is subnetted, 1 subnets</pre>	
R4# sh ! Outp Gateway O IA O IA O E1	<pre>192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0 ow ip route ospf begin Gateway ut omitted for brevity y of last resort is not set 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks 10.12.1.0/24 [110/3] via 10.34.1.3, 00:00:51, GigabitEthernet0/0 10.23.1.0/24 [110/2] via 10.34.1.3, 00:00:58, GigabitEthernet0/0 172.16.0.0/24 is subnetted, 1 subnets 172.16.1.0 [110/23] via 10.34.1.3, 00:00:46, GigabitEthernet0/0</pre>	

Example 7-14 OSPF Stub Configuration for Area 34

R3# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)# router ospf 1
R3(config-router)# area 34 stub
R4# configure terminal
R4# configure terminal Enter configuration commands, one per line. End with CNTL/Z.

OSPF Stubby Areas Routing Table After Stub Area Configuration

Example 7-15 shows the routing table for R3 and R4 after Area 34 is made an OSPF stub area.

The routing table from R3's perspective is not modified as it receives the Type 4 and Type 5 LSAs from Area 0.

When the Type 5 LSA (172.16.1.0/24) reaches the ABR (R3), the ABR generates a default route by using a Type 3 LSA.

While R4 does not see the route to the 172.16.1.0/24 network in its routing table, it has connectivity to that network through the default route.

Example 7-15 *Routing Table After Stub Area Configuration*

R3# show ip route ospf | begin Gateway ! Output omitted for brevity Gateway of last resort is not set 10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks 10.12.1.0/24 [110/2] via 10.23.1.2, 00:03:10, GigabitEthernet0/1 O IA 172.16.0.0/24 is subnetted, 1 subnets 172.16.1.0 [110/22] via 10.23.1.2, 00:03:10, GigabitEthernet0/1 0 E1 O IA 192.168.1.1 [110/3] via 10.23.1.2, 00:03:10, GigabitEthernet0/1 0 192.168.2.2 [110/2] via 10.23.1.2, 00:03:10, GigabitEthernet0/1 192.168.4.4 [110/2] via 10.34.1.4, 00:01:57, GigabitEthernet0/0 0 R4# show ip route ospf | begin Gateway ! Output omitted for brevity Gateway of last resort is 10.34.1.3 to network 0.0.0.0 O*IA 0.0.0.0/0 [110/2] via 10.34.1.3, 00:02:45, GigabitEthernet0/0 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks O IA 10.12.1.0/24 [110/3] via 10.34.1.3, 00:02:45, GigabitEthernet0/0 O IA 10.23.1.0/24 [110/2] via 10.34.1.3, 00:02:45, GigabitEthernet0/0 O TA 192.168.1.1 [110/4] via 10.34.1.3, 00:02:45, GigabitEthernet0/0 O IA 192.168.2.2 [110/3] via 10.34.1.3, 00:02:45, GigabitEthernet0/0 O IA 192.168.3.3 [110/2] via 10.34.1.3, 00:02:45, GigabitEthernet0/0

OSPF Stubby Areas Totally Stubby Areas

Totally stubby areas prohibit Type 3 LSAs (interarea), Type 4 LSAs (ASBR summary LSAs), and Type 5 LSAs (external routes) from entering the area at the ABR. When an ABR of a totally stubby area receives a Type 3 or Type 5 LSA, the ABR generates a default route for the totally stubby area.

In fact, ABRs for totally stubby areas advertise the default route into the totally stubby areas the instant an interface is assigned to Area 0. Assigning the interface acts as the trigger for the Type 3 LSA that leads to the generation of the default route. Only intra-area and default routes should exist within a totally stubby area. Figure 7-15 illustrates the totally stubby area concept.

OSPF Stubby Areas Totally Stubby Area Configuration

ABRs of a totally stubby area have **no-summary** appended to the configuration. The command **area area-id stub no-summary** is configured under the OSPF process.

The keyword **no-summary** does exactly what it states: It blocks all Type 3 (summary) LSAs going into the stub area, making it a totally stubby area. Example 7-17 demonstrates the configuration of R3 and R4 for making Area 34 a totally stubby area for both routers.

Example 7-17	Totally Stubi	by Area	Configurations
--------------	---------------	---------	----------------

```
R3# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)# router ospf 1
R3(config-router)# area 34 stub no-summary
R4# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R4(config)# router ospf 1
R4(config-router)# area 34 stub
```

OSPF Stubby Areas Routing Table After Totally Stubby Area

Example 7-16 displays R3 and R4's routing tables before Area 34 is converted to an OSPF totally stubby area.

Example 7-16 Routing Tables of R3 and R4 Before Totally Stubby Areas

R3 # sl	ow ip route ospf begin Gateway
! Outr	ut omitted for brevity
Gatewa	y of last resort is not set
	10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
AI C	10.12.1.0/24 [110/2] via 10.23.1.2, 00:01:36, GigabitEthernet0/1
	172.16.0.0/24 is subnetted, 1 subnets
) E1	172.16.1.0 [110/22] via 10.23.1.2, 00:01:36, GigabitEthernet0/1
AI C	192.168.1.1 [110/3] via 10.23.1.2, 00:01:36, GigabitEthernet0/1
C	192.168.2.2 [110/2] via 10.23.1.2, 00:01:46, GigabitEthernet0/1
c	192.168.4.4 [110/2] via 10.34.1.4, 00:01:46, GigabitEthernet0/0
	ow ip route ospf begin Gateway
! Outr	ut omitted for brevity
Gatewa	y of last resort is not set
	10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
AI C	10.12.1.0/24 [110/3] via 10.34.1.3, 00:00:51, GigabitEthernet0/0
AI C	10.23.1.0/24 [110/2] via 10.34.1.3, 00:00:58, GigabitEthernet0/0
	172.16.0.0/24 is subnetted, 1 subnets
) E1	172.16.1.0 [110/23] via 10.34.1.3, 00:00:46, GigabitEthernet0/0
AI C	192.168.1.1 [110/4] via 10.34.1.3, 00:00:51, GigabitEthernet0/0
AI C	192.168.2.2 [110/3] via 10.34.1.3, 00:00:58, GigabitEthernet0/0
AI C	192.168.3.3 [110/2] via 10.34.1.3, 00:00:58, GigabitEthernet0/0

Example 7-18 shows the routing tables for R3 and R4 after Area 34 is converted to a totally stubby area.

Example 7-18 Routing Tables After Area 34 Is Converted to a Totally Stubby Area

-	ut omitted for brevity y of last resort is not set
	10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
AIC	
	172.16.0.0/24 is subnetted, 1 subnets
) E1	172.16.1.0 [110/22] via 10.23.1.2, 00:02:34, GigabitEthernet0/1
AI C	192.168.1.1 [110/3] via 10.23.1.2, 00:02:34, GigabitEthernet0/1
C	192.168.2.2 [110/2] via 10.23.1.2, 00:02:34, GigabitEthernet0/1
C	192.168.4.4 [110/2] via 10.34.1.4, 00:03:23, GigabitEthernet0/0
	by ip route ospf begin Gateway
	ut omitted for brevity

O*IA 0.0.0.0/0 [110/2] via 10.34.1.3, 00:02:24, GigabitEthernet0/0
OSPF Stubby Areas

The not-so-stubby-area (NSSA) prohibits Type 5 LSAs from entering at the ABR but allows for redistribution of external routes into the NSSA. As the ASBR redistributes the network into OSPF in the NSSA, the ASBR advertises the network with a Type 7 LSA instead of a Type 5 LSA. When the Type 7 LSA reaches the ABR, the ABR converts the Type 7 LSA to a Type 5 LSA. The ABR does not automatically advertise a default route when a Type 5 or Type 7 LSA is blocked. Figure 7-16 demonstrates the concept of LSAs being processed on the ABR for the NSSA. Notice that the default route is optional and depends on the configuration.

Figure 7-16 NSSA Concept

OSPF Stubby Areas **NSSA Configuration**

The command **area** *area-id* **nssa** [**defaultinformation-originate**] is placed under the OSPF process on the ABR. All routers in an NSSA must be configured with the **nssa** option, or they do not become adjacent because the area type flags must match in the OSPF hello protocol in order to become adjacent.

A default route is not injected on the ABRs automatically for NSSAs, but the optional command **default-information-originate** can be appended to the configuration if a default route is needed in the NSSA. Example 7-20 shows the OSPF configuration of R3 and R4 after making Area 34 an NSSA. **Example 7-20** NSSA Configuration for Area 34 Routers

R3# show run section router ospf
router ospf 1
router-id 192.168.3.3
area 34 nssa default-information-originate
network 10.23.1.0 0.0.0.255 area 0
network 10.34.1.0 0.0.0.255 area 34
network 192.168.3.3 0.0.0.0 area 0
R4# show run section router ospf
R4# show run section router ospf router ospf 1
router ospf 1
router ospf 1 router-id 192.168.4.4
router ospf 1 router-id 192.168.4.4 area 34 nssa

OSPF Stubby Areas Routing Tables Before and After NSSA

Example 7-19 shows the routing tables of R1, R3, and R4 before Area 34 is converted to an NSSA.

Example 7-19 R1, R3, and R4's Routing Tables Before Area 34 Is Converted to an NSSA

R1# sho	w ip route ospf section 172.31					
172.31.0.0/24 is subnetted, 1 subnets						
0 E1	172.31.4.0 [110/23] via 10.12.1.2, 00:00:38, GigabitEthernet0/0					
R3# sh	w ip route ospf begin Gateway					
! Outpu	at omitted for brevity					
Gateway	y of last resort is not set					
	10.0.0/8 is variably subnetted, 5 subnets, 2 masks					
O IA	10.12.1.0/24 [110/2] via 10.23.1.2, 00:01:34, GigabitEthernet0/1					
	172.16.0.0/24 is subnetted, 1 subnets					
0 E1	172.16.1.0 [110/22] via 10.23.1.2, 00:01:34, GigabitEthernet0/1					
	172.31.0.0/24 is subnetted, 1 subnets					
0 E1	172.31.4.0 [110/21] via 10.34.1.4, 00:01:12, GigabitEthernet0/0					
O IA	192.168.1.1 [110/3] via 10.23.1.2, 00:01:34, GigabitEthernet0/1					
0	192.168.2.2 [110/2] via 10.23.1.2, 00:01:34, GigabitEthernet0/1					
0	192.168.4.4 [110/2] via 10.34.1.4, 00:01:12, GigabitEthernet0/0					
	w ip route ospf begin Gateway					
-	it omitted for brevity / of last resort is not set					
-						
	L0.0.0.0/8 is variably subnetted, 4 subnets, 2 masks					
AI O	10.12.1.0/24 [110/3] via 10.34.1.3, 00:02:28, GigabitEthernet0/0					
0 IA 10.23.1.0/24 [110/2] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
	172.16.0.0/24 is subnetted, 1 subnets					
0 E1	172.16.1.0 [110/23] via 10.34.1.3, 00:02:28, GigabitEthernet0/0					
O IA	192.168.1.1 [110/4] via 10.34.1.3, 00:02:28, GigabitEthernet0/0					
AI O	192.168.2.2 [110/3] via 10.34.1.3, 00:02:28, GigabitEthernet0/0					
O IA	192.168.3.3 [110/2] via 10.34.1.3, 00:02:28, GigabitEthernet0/0					

Example 7-21 shows the routing tables of R3 and R4 after converting Area 34 to an NSSA.

Example 7-21 R3 and R4 OSPF NSSA Routing Tables

OSPF Stubby Areas Totally NSSAs

Totally stubby areas prohibit Type 3 LSAs (interarea), Type 4 LSAs (ASBR summary LSAs), and Type 5 LSAs (external routes) from entering the area at the ABR, and they prohibit routes from being redistributed within that area. OSPF areas that need to block Type 3 and Type 5 LSAs and still provide the capability of redistributing external networks into OSPF should use the totally NSSA.

Figure 7-17 demonstrates how the LSAs are processed on the ABR for a totally NSSA.

Figure 7-17 Totally NSSA Concept

OSPF Stubby Areas Totally NSSA Configuration

Member routers of a totally NSSA use the same configuration as members of an NSSA. ABRs of a totally stubby area have no summary appended to the configuration. The command **area** *area-id* **nssa no-summary** is configured under the OSPF process.

Example 7-23 shows R3's and R4's OSPF configuration to convert Area 34 into a totally NSSA. Notice the **no-summary** keyword appended to R3's **nssa** command.

Example 7-23 Totally NSSA Configuration

OSPF Stubby Areas Routing Tables Before and After Totally NSSA

Example 7-22 displays the routing tables of R1, R3, and R4 before Area 34 is converted into an OSPF totally NSSA.

Rl# show ip route ospf section 172.31 172.31.0.0/24 is subnetted, 1 subnets							
0 E1	172.31.4.0 [110/23] via 10.12.1.2, 00:00:38, GigabitEthernet0/0						
R3# show ip route ospf begin Gateway							
! Output omitted for brevity							
Gateway of last resort is not set							
10	.0.0.0/8 is variably subnetted, 5 subnets, 2 masks						
O IA	10.12.1.0/24 [110/2] via 10.23.1.2, 00:01:34, GigabitEthernet0/1						
17	2.16.0.0/24 is subnetted, 1 subnets						
0 E1	172.16.1.0 [110/22] via 10.23.1.2, 00:01:34, GigabitEthernet0/1						
17	2.31.0.0/24 is subnetted, 1 subnets						
0 E1	172.31.4.0 [110/21] via 10.34.1.4, 00:01:12, GigabitEthernet0/0						
O IA	192.168.1.1 [110/3] via 10.23.1.2, 00:01:34, GigabitEthernet0/1						
0	192.168.2.2 [110/2] via 10.23.1.2, 00:01:34, GigabitEthernet0/1						
0	192.168.4.4 [110/2] via 10.34.1.4, 00:01:12, GigabitEthernet0/0						
R4# show	r ip route ospf begin Gateway						
! Output	omitted for brevity						
Gateway	of last resort is not set						
10	.0.0.0/8 is variably subnetted, 4 subnets, 2 masks						
O IA	10.12.1.0/24 [110/3] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
O IA	10.23.1.0/24 [110/2] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
	2.16.0.0/24 is subnetted, 1 subnets						
0 E1	172.16.1.0 [110/23] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
O IA	192.168.1.1 [110/4] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
O IA	192.168.2.2 [110/3] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						
O IA	192.168.3.3 [110/2] via 10.34.1.3, 00:02:28, GigabitEthernet0/0						

Example 7-24 shows the routing tables of R3 and R4 after Area 34 is converted into a totally NSSA.

Example 7-24 R3's and R4's Routing Tables After Area 34 Is Made a Totally NSSA

R3# show ip route ospf begin Gateway							
! Output omitted for brevity							
Gateway of last resort is not set							
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks							
O IA 10.12.1.0/24 [110/2] via 10.23.1.2, 00:02:14, GigabitEthernet0/1							
172.16.0.0/24 is subnetted, 1 subnets							
O E1 172.16.1.0 [110/22] via 10.23.1.2, 00:02:14, GigabitEthernet0/1							
172.31.0.0/24 is subnetted, 1 subnets							
O N1 172.31.4.0 [110/22] via 10.34.1.4, 00:02:04, GigabitEthernet0/0							
O IA 192.168.1.1 [110/3] via 10.23.1.2, 00:02:14, GigabitEthernet0/1							
0 192.168.2.2 [110/2] via 10.23.1.2, 00:02:14, GigabitEthernet0/1							
0 192.168.4.4 [110/2] via 10.34.1.4, 00:02:04, GigabitEthernet0/0							
R4# show ip route ospf begin Gateway							
! Output omitted for brevity							
Gateway of last resort is 10.34.1.3 to network 0.0.0.0							
O*IA 0.0.0.0/0 [110/2] via 10.34.1.3, 00:04:21, GigabitEthernet0/0							

OSPF Path Selection

- OSPF executes Dijkstra's shortest path first (SPF) algorithm to create a loop-free topology of shortest paths.
- All routers use the same logic to calculate the shortest path for each network.
- Path selection prioritizes paths by using the following logic:
 - 1. Intra-area
 - 2. Interarea
 - 3. External Type 1
 - 4. External Type 2

OSPF Path Selection

Interface cost is an essential component for Dijkstra's SPF calculation because the shortest path metric is based on the cumulative interface cost (that is, metric) from the router to the destination. OSPF assigns the OSPF link cost (that is, metric) for an interface using the formula in Figure 7-18.

The default reference bandwidth is 100 Mbps. There is no differentiation in the link cost associated to a Fast Ethernet interface and a 10-Gigabit Ethernet interface. Under the OSPF process, the command **auto-cost reference-bandwidth** *bandwidth-in-mbps* changes the reference bandwidth for all OSPF interfaces associated with that process. If the reference bandwidth is changed on one router, it is a best practice to set the same reference bandwidth for all OSPF cost can be set manually with the command **ip ospf cost** *1-65535* under the interface.

Cost = Reference Bandwidth Interface Bandwidth Figure 7-18 OSPF Interface Cost Formula

OSPF Path Selection Intra-Area Routes

If multiple intra-area routes exist, the path with the lowest total path metric is installed in the OSPF Routing Information Base (RIB) and is then presented to the router's global RIB. If there is a tie in metric, both routes are installed into the OSPF RIB.

In Figure 7-19, R1 is computing the route to 10.4.4.0/24. Instead of taking the faster Ethernet connection (R1 \rightarrow R2 \rightarrow R4), R1 takes the path across the slower serial link (R1 \rightarrow R3 \rightarrow R4) to R4 because that is the intra-area path.

Example 7-25 shows R1's routing table entry for the 10.4.4.0/24 network.

Figure 7-19 Intra-Area Routes over Interarea Routes

Example 7-25 *R1's Routing Table for the 10.4.4.0/24 Network*

R1# show ip route 10.4.4.0				
Routing entry for 10.4.4.0/24				
Known via "ospf 1", distance 110, metric 111, type intra area				
Last update from 10.13.1.3 on GigabitEthernet0/1, 00:00:42 ago				
Routing Descriptor Blocks:				
* 10.13.1.3, from 10.34.1.4, 00:00:42 ago, via GigabitEthernet0/1				
Route metric is 111, traffic share count is 1				

OSPF Path Selection Interarea Route Selection

The next priority for selecting a path to a network is selection of the path with the lowest total path metric to the destination. If there is a tie in metric, both routes are installed in the OSPF RIB. All interarea paths for a route must go through Area 0 to be considered. In Figure 7-20, R1 is computing the path to R6. R1 uses the path R1 \rightarrow R3 \rightarrow R5 \rightarrow R6 because its total path metric is 35 rather than the R1 \rightarrow R2 \rightarrow R4 \rightarrow R6 path with a metric of 40.

Figure 7-20 Interarea Route Selection

OSPF Path Selection External Route Selection

External routes are classified as Type 1 or Type 2. The main differences between Type 1 and Type 2 external OSPF routes are as follows:

- Type 1 routes are preferred over Type 2 routes.
- The Type 1 metric equals the redistribution metric plus the total path metric to the ASBR. In other words, as the LSA propagates away from the originating ASBR, the metric increases.
- The Type 2 metric equals only the redistribution metric. The metric is the same for the router next to the ASBR as it is for the router 30 hops away from the originating ASBR. This is the default external metric type that OSPF uses.

OSPF Path Selection E1 and N1 External Routes

External OSPF Type 1 route calculation uses the redistribution metric plus the lowest path metric to reach the ASBR that advertised the network.

Type 1 path metrics are lower for routers closer to the originating ASBR, whereas the path metric is higher for a router 10 hops away from the ASBR. If there is a tie in the path metric, both routes are installed into the RIB.

If the ASBR is in a different area, the path of the traffic must go through Area 0.

An ABR does not install O E1 and O N1 routes into the RIB at the same time. O N1 is always given preference for a typical NSSA, and its presence prevents the O E1 from being installed on the ABR.

OSPF Path Selection E2 and N2 External Routes

External OSPF Type 2 routes do not increment in metric, regardless of the path metric to the ASBR. If there is a tie in the redistribution metric, the router compares the forwarding cost.

The forwarding cost is the metric to the ASBR that advertised the network, and the lower forwarding cost is preferred. If there is a tie in forwarding cost, both routes are installed into the routing table.

An ABR does not install O E2 and O N2 routes into the RIB at the same time. O N2 is always given preference for a typical NSSA, and its presence prevents the O E2 from being installed on the ABR.

OSPF Path Selection E2 and N2 External Routes (Cont.)

Figure 7-21 shows the topology for R1 computing a path to the external network (172.16.0.0/24) that is being redistributed.

Figure 7-21 External Type 2 Route Selection Topology

Example 7-26 shows R1's metric and forwarding metric to the 172.16.0.0/24 network.

Example 7-26 OSPF Forwarding Metric

R1# show ip route 172.16.0.0				
Routing entry for 172.16.0.0/24				
Known via "ospf 1", distance 110, metric 20, type extern 2, forward metric 30				
Last update from 10.13.1.3 on GigabitEthernet0/1, 00:12:40 ago				
Routing Descriptor Blocks:				
* 10.13.1.3, from 192.168.7.7, 00:12:40 ago, via GigabitEthernet0/1				
Route metric is 20, traffic share count is 1				

OSPF Path Selection Equal-Cost Multipathing

If OSPF identifies multiple paths in the algorithms discussed so far in this chapter, those routes are installed into the routing table using equal-cost multipathing (ECMP).

The default maximum number of ECMP paths is four.

The default ECMP setting can be overwritten with the command **maximum-paths** *maximum-paths* under the OSPF process to modify the default setting.

Summarization of Routes

- Splitting up an OSPF routing domain into multiple areas reduces the size of each area's LSDB.
- While the number of routers and networks remains the same within the OSPF routing domain, the detailed Type 1 and Type 2 LSAs are exchanged for simpler Type 3 LSAs.

Summarization of Routes Summarization Fundamentals

Summarization of routes helps SPF calculations run faster. Because all routers within an area must maintain an identical copy of the LSDB, summarization occurs between areas on the ABRs. Summarization can eliminate the SPF calculation outside the area for the summarized prefixes because the smaller prefixes are hidden.

Figure 7-23 provides a simple network topology in which the serial link significantly adds to the path metric, and all traffic uses the path through R2 to reach the 172.16.46.0/24 network.

Figure 7-23 The Impact of Summarization on SPF Topology Calculation

Figure 7-24 shows the networks in Area 1 being summarized at the ABR into the aggregate 10.1.0.0/18 prefix.

Figure 7-24 Topology Example with Summarization

Summarization of Routes

Interarea summarization reduces the number of Type 3 LSAs that an ABR advertises into an area when it receives Type 1 LSAs. The network summarization range is associated with a specific source area for Type 1 LSAs.

When a Type 1 LSA in the summarization range reaches the ABR from the source area, the ABR creates a Type 3 LSA for the summarized network range. The ABR suppresses the more specific Type 1 LSAs, thereby reducing the number of Type 1 LSAs being generated. Interarea summarization does not impact the Type 1 LSAs within the source area.

Figure 7-25 illustrates this concept, with the three Type 1 LSAs (172.16.1.0/24, 172.16.2.0/24, and 172.16.3.0/24) being summarized into one Type 3 LSA, as the 172.16.0.0/20 network.

Figure 7-25 OSPF Interarea Summarization Concept

Summarization of Routes Configuration of Interarea Summarization

You define the summarization range and associated area by using the command **area** area-id **range** network subnet-mask [**advertise** | **not-advertise**] [**cost** metric] under the OSPF process. The default behavior is to advertise the summary prefix, so the keyword advertise is not necessary. Appending cost metric to the command statically sets the metric on the summary route.

Figure 7-26 provides a topology example in which R1 is advertising the 172.16.1.0/24, 172.16.2.0/24, and 172.16.3.0/24 networks.

Figure 7-26 OSPF Interarea Summarization Example

Summarization of Routes Interarea Route Summarization Configuration

Example 7-27 shows the routing table on R3 before summarization. Notice that the 172.16.1.0/24, 172.16.2.0/24, and 172.16.3.0/24 networks are all present.

Example 7-27 Routing Table Before OSPF Interarea Route Summarization

R3# s	3# show ip route ospf begin Gateway						
Gateway of last resort is not set							
	10.0.0/8 is variably subnetted, 5 subnets, 2 masks						
O IA	0 IA 10.12.1.0/24 [110/20] via 10.23.1.2, 00:02:22, GigabitEthernet0/1						
	172.16.0.0/24 is subnetted, 3 subnets						
AI O	172.16.1.0 [110/3] via 10.23.1.2, 00:02:12, GigabitEthernet0/1						
O IA	172.16.2.0 [110/3] via 10.23.1.2, 00:02:12, GigabitEthernet0/1						
O IA	172.16.3.0 [110/3] via 10.23.1.2, 00:02:12, GigabitEthernet0/1						

Example 7-28 provides R2's configuration for interarea summarization into an aggregate route 172.16.0.0/16. A static cost of 45 is added to the summary route to reduce CPU load if any of the three networks flap.

Example 7-28 R2's Interarea Route Summarization Configuration

router of	spf 1			
router-i	id 192.168.	2.2		
area 12	range 172.	16.0.0 255.	255.0.0	cost 45
network	10.12.0.0	0.0.255.255	area 12	2
network	10.23.0.0	0.0.255.255	area O	

Summarization of Routes Interarea Summarization Verification

Example 7-29 shows R3's routing table for verification that the smaller routes were suppressed while the summary route was aggregated.

The ABR performing interarea summarization installs discard routes, which are routes to the Null0 interface that match the summarized network.

Example 7-30 shows the discard route to Null0 on R2.

Example 7-29 Routing Table After OSPF Interarea Route Summarization

R3# show ip route ospf begin Gateway	R3# s						
Gateway of last resort is not set							
10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks							
O IA 10.12.1.0/24 [110/2] via 10.23.1.2, 00:02:04, GigabitEthernet0/1	O IA						
O IA 172.16.0.0/16 [110/46] via 10.23.1.2, 00:00:22, GigabitEthernet0/1	O IA						

Example 7-30 Discard Route for Loop Prevention

R2# s	how ip route ospf begin Gateway
Gatew	ay of last resort is not set
	172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
0	172.16.0.0/16 is a summary, 00:03:11, Nullo
0	172.16.1.0/24 [110/2] via 10.12.1.1, 00:01:26, GigabitEthernet0/0
0	172.16.2.0/24 [110/2] via 10.12.1.1, 00:01:26, GigabitEthernet0/0
0	172.16.3.0/24 [110/2] via 10.12.1.1, 00:01:26, GigabitEthernet0/0

Summarization of Routes External Summarization

External summarization reduces the number of external LSAs in an OSPF domain. An external network summarization range is configured on the ASBR router, and network prefixes that match the network range do not generate a Type 5/Type 7 LSA for the specific prefix. Instead, a Type 5/Type 7 LSA with the external network summarization range is created, and the smaller routes in the summary range are suppressed.

Figure 7-27 demonstrates the concept with the external network summarization range 17.16.0.0/20 configured on the ASBR (R6). The ASBR creates only one Type 5/Type 7 LSA in Area 56 when EIGRP redistributes routes into OSPF.

Summarization of Routes External Summarization Configuration

Example 7-31 provides the routing table on R5 before external route summarization.

To configure external summarization, you use the command **summary-address** *network subnet-mask* under the OSPF process.

Example 7-32 demonstrates the configuration for external route summarization on R6 (the ASBR).

Example 7-31 Routing Table Before External Summarization

R5# show ip route ospf begin Gateway
! Output omitted for brevity
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 7 subnets, 3 masks
0 IA 10.3.3.0/24 [110/67] via 10.45.1.4, 00:01:58, GigabitEthernet0/0
O IA 10.24.1.0/29 [110/65] via 10.45.1.4, 00:01:58, GigabitEthernet0/0
0 IA 10.123.1.0/24 [110/66] via 10.45.1.4, 00:01:58, GigabitEthernet0/0
172.16.0.0/24 is subnetted, 15 subnets
O E2 172.16.1.0 [110/20] via 10.56.1.6, 00:01:00, GigabitEthernet0/1
0 E2 172.16.2.0 [110/20] via 10.56.1.6, 00:00:43, GigabitEthernet0/1
0 E2 172.16.14.0 [110/20] via 10.56.1.6, 00:00:19, GigabitEthernet0/1
0 E2 172.16.15.0 [110/20] via 10.56.1.6, 00:00:15, GigabitEthernet0/1

Example 7-32 OSPF External Summarization Configuration

R6
router ospf 1
router-id 192.168.6.6
summary-address 172.16.0.0 255.255.240.0
redistribute eigrp 1 subnets
network 10.56.1.0 0.0.0.255 area 56

Summarization of Routes Routing Table After External Summarization

Example 7-33 shows R5's routing table, which verifies that the component routes were summarized into the 172.16.0.0/20 summary network.

Example 7-33 Routing Table After External Summarization

R5# sho	w ip route ospf begin Gateway			
Gateway of last resort is not set				
1	0.0.0.0/8 is variably subnetted, 7 subnets, 3 masks			
O IA	10.3.3.0/24 [110/67] via 10.45.1.4, 00:04:55, GigabitEthernet0/0			
O IA	10.24.1.0/29 [110/65] via 10.45.1.4, 00:04:55, GigabitEthernet0/0			
O IA	10.123.1.0/24 [110/66] via 10.45.1.4, 00:04:55, GigabitEthernet0/0			
172.16.0.0/20 is subnetted, 1 subnets				
O E2	172.16.0.0 [110/20] via 10.56.1.6, 00:00:02, GigabitEthernet0/1			
R5# show ip route 172.16.0.0 255.255.240.0				
Routing	entry for 172.16.0.0/20			
Known via "ospf 1", distance 110, metric 20, type extern 2, forward metric 1				
Last update from 10.56.1.6 on GigabitEthernet0/1, 00:02:14 ago				
Routing Descriptor Blocks:				
* 10.56.1.6, from 192.168.6.6, 00:02:14 ago, via GigabitEthernet0/1				
D	oute metric is 20, traffic share count is 1			

The summarizing ASBR installs a discard route to Null0 that matches the summarized network range as part of a loop-prevention mechanism. Example 7-34 shows the routing table of R6 with the external summary discard route.

Example 7-34 R6 Discard Route Verification

Discontiguous Network

• A network engineer who does not fully understand OSPF design might create a topology where interarea traffic crosses through a non-backbone area.

Discontiguous Network Discontiguous Network

While R2 and R3 have OSPF interfaces in Area 0, traffic from Area 12 must cross Area 234 to reach Area 45. An OSPF network with this design is discontiguous because interarea traffic is trying to cross a non-backbone area.

The routing tables on R2 and R3 in Figure 7-29, looks like routes are being advertised across area 234.

The 10.45.1.0/24 network was received by R4, injected into R4's Area 0 and then re-advertised to Area 234, where R2 installs the route.

CISCO

Figure 7-29 OSPF Routes for a Discontiguous Network

Discontiguous Network Discontiguous Network (Cont.)

Most people would assume that R1 would learn about the route learned by Area 45 because R4 is an ABR. However, they would be wrong. ABRs follow three fundamental rules for creating Type 3 LSAs:

- Type 1 LSAs received from an area create Type 3 LSAs into backbone area and nonbackbone areas.
- Type 3 LSAs received from Area 0 are created for the non-backbone area.
- Type 3 LSAs received from a non-backbone area are only inserted into the LSDB for the source area. ABRs do not create a Type 3 LSA for the other areas (including a segmented Area 0).

The simplest fix for a discontiguous network is to ensure that Area 0 is contiguous and convert the interfaces on R2, R3, and R4 for the 10.23.1.0/24 and 10.34.1.0/24 networks to be members of Area 0.

Virtual Links

• OSPF virtual links provide a method to overcome discontiguous networks.

Virtual Links Virtual Links

Using a virtual link is similar to running a virtual tunnel within OSPF between an ABR and another multi-area OSPF router. The tunnel belongs to the backbone (Area 0), and therefore the router terminating the virtual link becomes an ABR if it does not have an interface already associated to Area 0. Figure 7-30 shows a contiguous backbone between R2 and R4, with a virtual link across Area 234. With the virtual link established, the routes from Area 12 are advertised into Area 45 and vice versa.

Virtual Links Virtual Links (Cont.)

Virtual links are built between routers in the same area. The area in which the virtual link endpoints are established is known as the transit area. Each router identifies the remote router by its RID. The virtual link can be one hop or multiple hops away from the remote device. The virtual link is built using Type 1 LSAs, where the neighbor state is Type 4.

You configure the virtual link by using the command **area** area-id **virtual-link** endpoint-RID. The configuration is performed on both endpoints of the virtual link. At least one endpoint virtual link router has to be a member of Area 0, and virtual links cannot be formed on any OSPF stubby areas.

Virtual Links Virtual Link Configuration

Virtual links are built between routers in the same area. The area in which the virtual link endpoints are established is known as the transit area. Each router identifies the remote router by its RID. The virtual link can be one hop or multiple hops away from the remote device. The virtual link is built using Type 1 LSAs, where the neighbor state is Type 4.

You configure the virtual link by using the command **area** area-id **virtual-link** endpoint-RID. The configuration is performed on both endpoints of the virtual link. At least one endpoint virtual link router has to be a member of Area 0, and virtual links cannot be formed on any OSPF stubby areas.

Example 7-35 OSPF Virtual Link Configuration

R2
router ospf 1
router-id 192.168.2.2
area 234 virtual-link 192.168.4.4
network 10.2.2.2 0.0.0.0 area 0
network 10.12.1.2 0.0.0.0 area 12
network 10.23.1.2 0.0.0.0 area 234
R4
R4 router ospf 1
router ospf 1
router ospf 1 router-id 192.168.4.4
router ospf 1 router-id 192.168.4.4 area 234 virtual-link 192.168.2.2

Virtual Links Virtual Links Verification

To verify the virtual link status, you use the command **show ip ospf virtual-links**. Example 7-36 shows the output.

A virtual link appears as a specific interface, as demonstrated in Example 7-37. Notice that the cost here is 2, which accounts for the metrics between R2 and R4.

Example 7-37 OSPF Virtual Link as an OSPF Interface

R4# show ip	ospf i	Interface brief				
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F/C
Gi0/2	1	0	10.4.4/24	1	DR	0/0
VL0	1	0	10.34.1.4/24	2	P2P	1/1
Lo0	1	34	192.168.4.4/32	1	DOWN	0/0
Gi0/1	1	45	10.45.1.4/24	1	BDR	1/1
Gi0/0	1	234	10.34.1.4/24	1	BDR	1/1

Example 7-36 OSPF Virtual Link Verification

R2# show ip ospf	virtual	-links			
Virtual Link OSPF	_VL0 to	router 192.1	.68.4.4 is up		
Run as demand c	ircuit				
DoNotAge LSA al	lowed.				
Transit area 23	4, via	interface Gig	gabitEthernet(0/1	
Topology-MTID	Cost	Disabled	Shutdown	Topology Name	
0	2	no	no	Base	
Transmit Delay	is 1 se	c, State POIN	T_TO_POINT,		
Timer intervals	config	ured, Hello 1	0, Dead 40, W	Nait 40, Retransmit 5	
Hello due in	00:00:0	1			
Adjacency Sta	te FULL	(Hello suppr	ressed)		
Index 1/1/3, retransmission queue length 0, number of retransmission 0					
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)					
Last retransmission scan length is 0, maximum is 0					
Last retransm	ission	scan time is	0 msec, maxim	num is 0 msec	
R4# show ip ospf	virtual	-links			
! Output omitted :					
Virtual Link OSPF VL0 to router 192.168.2.2 is up					
Run as demand circuit					
DoNotAge LSA allowed.					
Transit area 23		interface Gio	abitEthernet(0/0	
Topology-MTID	Cost	Disabled	Shutdown	Topology Name	
0	2	no	no	Base	
Transmit Delay	is 1 se				

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

Hello due in 00:00:08

Adjacency State FULL (Hello suppressed)

ululu cisco

Virtual Links Routing Table After Virtual Link

The virtual link routers form a point-to-point adjacency, as demonstrated in Example 7-38. Notice that R4 views R2 as a neighbor even though it is not directly connected.

Example 7-39 shows the routing tables of R1 and R5 after the virtual link is established.

Example 7-39 R1's and R5's Routing Tables After the Virtual Link is Created

Gatewa	y of last resort is not set
:	10.0.0/8 is variably subnetted, 7 subnets, 2 masks
AI O	10.2.2.0/24 [110/2] via 10.12.1.2, 00:00:10, GigabitEthernet0/0
AI O	10.4.4.0/24 [110/4] via 10.12.1.2, 00:00:05, GigabitEthernet0/0
AI O	10.23.1.0/24 [110/2] via 10.12.1.2, 00:00:10, GigabitEthernet0/0
AI O	10.34.1.0/24 [110/3] via 10.12.1.2, 00:00:10, GigabitEthernet0/0
O IA	
	10.45.1.0/24 [110/4] via 10.12.1.2, 00:00:05, GigabitEthernet0/0
R5# sh	
R5# sh Gatewa	w ip route ospf begin Gateway
R5# sh Gatewa	y of last resort is not set
R5# sh Gatewa O IA	y of last resort is not set 10.0.0/8 is variably subnetted, 7 subnets, 2 masks
R5# sh Gatewa O IA O IA O IA	<pre>w ip route ospf begin Gateway y of last resort is not set 10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks 10.2.2.0/24 [110/4] via 10.45.1.4, 00:00:43, GigabitEthernet0/1</pre>
R5# sh Gatewa	<pre>w ip route ospf begin Gateway y of last resort is not set 10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks 10.2.2.0/24 [110/4] via 10.45.1.4, 00:00:43, GigabitEthernet0/1 10.4.4.0/24 [110/2] via 10.45.1.4, 00:01:48, GigabitEthernet0/1</pre>

Example 7-50 If virtual Link Displayed as an OSIT Neighbor	Example 7-38	A Virtual Link Displayed as an OSPF.	Neighbor
---	--------------	--------------------------------------	----------

R4# show ip os	pf neig	hbor			
Neighbor ID	Pri	State	Dead Time	Address	Interface
192.168.2.2	0	FULL/ -	-	10.23.1.2	OSPF_VL0
192.168.5.5	1	FULL/DR	00:00:34	10.45.1.5	GigabitEthernet0/1
192.168.3.3	1	FULL/DR	00:00:38	10.34.1.3	GigabitEthernet0/0

Prepare for the Exam

Prepare for the Exam Key Topics for Chapter 7

Description	
Link-state advertisements	OSPF Type 5 LSA flooding
LSA Type 1: router links	LSA Type 4: ASBR summary
LSA Type 1 link types	OSPF Type 4 and Type 5 LSA flooding
LSA Type 2: network link	LSA Type 7: NSSA external summary
Visualization of Area 1234 with Type 1 and Type 2 LSAs	OSPF Type 7 LSA advertisement
LSA Type 3: summary link	Overview of LSA types from a sample topology
LSA Type 3 metric calculations	Stub area
LSA Type 3 topology	OSPF Stub area concept
LSA Type 5: external routes	Totally stubby areas

Prepare for the Exam Key Topics for Chapter 7 (Cont.)

Description	
Totally stubby area concept	E2 and N2 external routes
Not-so-stubby area	LSA reduction through area segmentation
Not-so-stubby area concept	Interarea summarization
Totally not-so-stubby area	Summarization of Type 1 LSAs
Totally not-so-stubby area concept	Summarization of discard routes
OSPF path selection	External summarization
Intra-area routes	A discontiguous network
Interarea routes	Virtual links
E1 and N1 external routes	Locating virtual link endpoints, by RID

Prepare for the Exam Key Terms for Chapter 7

Key Terms	
area border router (ABR)	NSSA external LSA
autonomous system border router (ASBR)	OSPF stub area
backbone area	OSPF totally stubby area
Router LSAs	OSPF not-so-stubby area (NSSA)
network LSA	OSPF totally NSSA
summary LSA	discontiguous network
ASBR summary LSA	virtual link
external LSA	Locating virtual link endpoints

Prepare for the Exam Command Reference for Chapter 7

Task	Command Syntax
Initialize the OSPF process	router ospf process-id
Display the generic LSA listings in a router's LSDB and the type and count for each type from an advertising router	show ip ospf database
Display the specific information for a Type 1, 2, 3, 4, 5, or 7 LSA	show ip ospf database {router network summary asbr-summary external nssa-external}
Configure all routers in an OSPF area as an OSPF stub area	area area-id stub
Configure an ABR as a totally stubby area router ABR	area area-id stub no-summary
Configure all routers in an OSPF area as an OSPF NSSA area	area area-id nssa

Prepare for the Exam Command Reference for Chapter 7 (Cont.)

Task	Command Syntax
Configure an ABR for an NSSA with optional default route injection	area area-id nssa [default-information-originate]
Configure an ABR as a totally NSSA router ABR	area area-id nssa no-summary
Modify the OSPF reference bandwidth for dynamic interface metric costing	auto-cost reference-bandwidth bandwidth-in-mbps
Statically set the OSPF metric for an interface	ip ospf cost 1-65535
Configure internal route summarization on the first ABR attached to the source network	area area-id range network subnet-mask [advertise not-advertise] [cost metric]
Configure external route summarization on the ASBR	summary-address network subnet-mask
Configure an OSPF virtual link to extend Area 0	area area-id virtual-link endpoint-RID

··II··II·· CISCO