

Routing Optimization, Redistribution, Policy Routing

ROUTE modules 4 + 5

Agenda

- Characteristic of network design
- Redistribute routes into RIP, OSPF, EIGRP

Control routing updates

- distribute lists
- ACLs, prefix lists
- route maps

IP SLA monitoring

Characteristic of Network Design

Characteristic of Network Design (1)

Resiliency

- Ability to maintain an acceptable level of service when faults occur
- Redundancy does not guarantee resiliency
- E.g. fail-over, load balancing

Availability

- Time required for a routing protocol to converge
- E.g. fast converging routing protocols, parameters tuning

Adaptability

- Ability to adapt to changing conditions
- E.g. using redundant path when the primary path becomes congested

Performance

- Routers and other active network devices tuning to achieve best performance
- E.g. load balancing, metrics modification

Characteristic of Network Design (2)

Support for network and application services

 Advance path control for specific services – security, QoS, WAAS (Wide Area Application Services)

Predictability

 Implemented path control solution SHOULD provide deterministic and predictable results

Asymmetric traffic

- Traffic flows on the one path in one direction and on a different path in the opposite direction
- Often desirable network trait (satellite link: upstream is very slow compared to downstream)

Redistribution

Multiple IP Routing Protocols on Network

- Interim solution when migrating between IGP
- Merging network under different management
 - ISP and customer networks
- Advanced features in other routing protocol
 - "World beater" routing protocol does not exist
- "Political" reasons
 - It's not a rule, it's the policy!
- Mixed vendor environment
 - Different vendors = different protocols
 - Recommendation is to use open standard protocol

Redistribution (1)

- Routing information are exchanged from the one routing protocol to another
- Routing information exchange is called redistribution
- Please note!
 - Every routing protocol has its own working database
 - Routing protocol populates routing table with the best routes using based on information in the working database
 - Routing protocol transmits only own working database
 - EIGRP spreads only own networks and same behavior have also others (as well as RIP, OSPF and IS-IS)

Redistribution (2)

- Several routing protocols MAY run simultaneously on a router
 - Routing information is NOT exchanged between routing protocols
 - Additional configuration is always necessary to accomplish this
- Routing table is the only place, where information from all routing protocols are "put together"
- Network MUST be first in the routing table...
 - ...only after that it can be redistributed
- Routing table is intact on redistributing router
- Detailed information about topology are NOT sent...
 - ...only information about existence of the network in the routing table

Redistribution ③

Every protocol has different ways of metric computation

- Metric in different routing protocol CAN NOT be easily adopted
- Solution:
 - Initial metric (a.k.a. seed metric) is set for redistribution in a target protocol...
 - ...and after that the metric is increased as usual
- Link-state protocols use predefined default metric, distance-vector protocols use infinity
 - Initial metric SHOULD be always set by administrator
 - Using default values is not recommended

Default Seed Metrics

Protocol	Seed metric		
RIP	0 interpreted as infinity		
IGRP/EIGRP	0 interpreted as infinity		
OSPF	20 for all except BGP, 1 for BGP		
IS-IS	0		
BGP	BGP metric is set to IGP metric value		

Redistribution (4)

- Any routing protocol can be used as a source for redistribution
 - Everything what populates routing table can be redistributed static routes, connected networks etc.
 - C, L, S, D, D EX, B, O, O IA, O E1/2, O N1/2, R, i
- Any routing protocol (except ODR) can be used as a destination for redistribution

Redistribution (5)

- Redistribution is configured on one or more routers where multiple IGPs are used simultaneously
 - One-way or two-way redistribution
 - One router (one-point) or several routers (multipoint)

Multipoint redistribution – possible cause of routing loops ③

Redistribution: Issues (1)

Problems:

- Routing loop
- Suboptimal path selection
- Incompatible routing information
- Inconsistent convergence time

Solutions:

- Administrative distance
- Route maps
- Distribution lists
- Metrics manipulation

Redistribution: Issues (2)

Redistribution: Issues ③

Redistribution: Configuration Note

- It is important to note that routes are redistributed into a routing protocol, so the redistribute command is configured under the routing process that is to receive the redistributed routes
 - Target routing protocol is recipient of routing information
 - Source protocol is provider of routing information
- redistribute command configures which source is used as a provider of routing information
- Redistribution on Cisco routers is configured always as a part of a target protocol

Redistribution into RIP

Router(config-router) # redistribute protocol [process-id]
[match route-type] [metric metric-value] [route-map map-tag]

Configuration options:

```
R1(config) # router rip
R1(config-router) # redistribute ospf ?
<1-65535> Process ID
R1(config-router) # redistribute ospf 1 ?
match Redistribution of OSPF routes
metric Metric for redistributed routes
route-map Route map reference
...
<cr>
```

Default metric is infinity

The redistribute Command for RIP

Parameter	Description
protocol	Source protocol from which routes are redistributed.
process-id	For BGP or EIGRP, this value is an autonomous system number. For OSPF, this value is an OSPF process ID.
match route-type	(Optional) A parameter used when redistributing OSPF routes into another routing protocol. It is the criterion by which OSPF routes are redistributed into other routing domains. It can be any of the following: (internal, external NSSA-external, type 1,2).
metric metric-value	(Optional) A parameter used to specify the RIP seed metric for the redistributed route. If this value is not specified and no value is specified using the default-metric router configuration command, the default metric is 0 (interpreted as infinity). The metric for RIP is hop count.
route-map map-tag	(Optional) Specifies the identifier of a configured route map to be interrogated to filter the importation of routes from the source routing protocol to the current RIP routing protocol.

Redistributing into RIP: Example

Table R1

С	10.1.1.0	
R	192.168.1.0	[120/1]
0	172.16.1.0	[110/50]

Table R2 C 10.1.1.0 C 192.168.1.0 R 172.16.0.0 [120/3]

Redistributing into OSPF

Router(config-router)# redistribute protocol [process-id]
[metric metric-value] [metric-type type-value]
[route-map map-tag] [subnets] [tag tag-value]

- Default route CAN NOT be redistributed into OSPF
- Subnets are not redistributed by default (only classful networks)
 - subnets keyword MUST be used for subnets redistribution
- Default metric is 20 (BGP has default metric 1)
- Redistributed networks are sent as an external routes type 1 or 2 (LSA5 or LSA7), default is type 2

R1(config-router)# redistribute eigrp 100 ?			
metric	Metric for redistributed routes		
metric-type	OSPF/IS-IS exterior metric type for		
	redistributed routes		
route-map	Route map reference		
subnets	Consider subnets for redistribution into OSPF		
tag	Set tag for routes redistributed into OSPF		
<cr></cr>			

Redistributing into OSPF: Example

R1(config)# router ospf 1 R1(config-router)# redistribute eigrp 100 subnets metric-type 1 R1(config-router)#

Table R1

С	10.1.1.0	
0	192.168.1.0	[110/20]
D	172.16.1.0	[90/409600]

Table R2

С	10.	.1.1.0	
С	192	2.168.1.0	
0	E1	172.16.0.0	[110/20]

Redistributing into EIGRP

```
Router(config-router)# redistribute protocol [process-id]
[match {internal | external 1 | external 2}]
[metric metric-value] [route-map map-tag]
```

Configuration options:

Default metric is infinity

Redistributing into EIGRP: Example

R1(config)# router	eigrp 100							
R1(config-router)#	redistribute	ospf 1	l metric	10000	100	255	1	1500
R1(config-router)#								

Та	ble R1	
C	10.1.1.0	
I	192.168.1.0	
0	172.16.1.0	[110/50]

- <u>Bandwidth</u> in kilobits per second = 10000
- <u>Delay</u> in tens of microseconds = 100
- <u>R</u>eliability = 255 (maximum)
- Load = 1 (minimum)
- <u>M</u>TU = 1500 bytes

Table R2

С	10.1.1.0	
С	192.168.1.0	
D	EX 172.16.1.0	[170/307200]

Default Metric

Instead of setting default metric in the redistribute command, initial metric can be set using default-metric

Router(config-router)# default-metric number

• The *number* parameter is the value of the metric:

- For RIP it is the number of hops
- For OSPF it is the assigned cost
- For EIGRP it is composite metric as on previous slide

Example:

```
Router(config-router)#
  redistribute rip metric 10000 1 255 1 1500
!Same as following...
Router(config-router)# default-metric 10000 1 255 1 1500
Router(config-router)# redistribute rip
```

Default Metric: Example

R1(config)# router eigrp 100
R1(config-router)# default-metric 10000 100 255 1 1500
R1(config-router)# redistribute ospf 1
R1(config-router)#

Table R1

С	10.1.1.0	
D	192.168.1.0	[90/307200]
0	172.16.1.0	[110/50]

Table R2

- C 10.1.1.0
- C 192.168.1.0
- D EX 172.16.1.0 [170/307200]

Redistribution Examples

Before Redistribution

R2#

router ospf 1			
network 10.0.0.8	0.0.0.3	area	0
router rip			
network 10.0.0.0			
version 2			
passive-interface	s2		

R1 Routing Table

R2 Routing Table

С	10.0.0.0
R	10.1.0.0
R	10.2.0.0
R	10.3.0.0

С	10.0.0.0
С	10.0.0.8
R	10.1.0.0
R	10.2.0.0
R	10.3.0.0
0	10.8.0.0
0	10.9.0.0
0	10.10.0.0
0	10.11.0.0

R3 Routing Table

с	10.0.0.8
0	10.8.0.0
0	10.9.0.0
0	10.10.0.0
0	10.11.0.0

Configuration and After Redistribution State

R2#

router ospf 1
network 10.0.0.8 0.0.0.3 area 0
redistribute rip subnets metric 300
router rip
network 10.0.0.0
version 2
passive-interface s2
redistribute ospf 1 metric 5

R1 Routing Table

	1201	uting		
۰.	ROL	111111111	121	DIP
	1.00		10	

С	10.0.0.0
R	10.1.0.0
R	10.2.0.0
R	10.3.0.0
R	10.8.0.0
R	10.9.0.0
R	10.10.0.0
R	10.11.0.0

R2 Rc	outing Table
с	10.0.0.0
с	10.0.0.8
R	10.1.0.0
R	10.2.0.0
R	10.3.0.0
0	10.8.0.0
0	10.9.0.0
0	10.10.0.0
0	10.11.0.0

R3 Routing Table

С		10.0.0.8
0	E2	10.1.0.0
0	E2	10.2.0.0
0	E2	10.3.0.0
0		10.8.0.0
0		10.9.0.0
0		10.10.0.0
0		10.11.0.0

Route Summarization and Final State

R1#

interface s0
ip summary-address rip 10.0.0.0 255.252.0.0

R3#

router ospf 1 area 1 range 10.8.0.0 255.252.0.0

Modifying Administrative Distance

Modifying Administrative Distance

- Used in more complicated redistributions
- Proper planning is necessary

Router(config-router)# distance administrative-distance
[address wildcard-mask [access-list-number | NAME]]

Usage for OSPF

Router(config-router)# distance ospf {[intra-area dist1]
 [inter-area dist2] [external dist3]

Usage for EIGRP

Router(config-router)# distance eigrp internal external

Topology

Routers Configurations

R1#

router ospf 1
redistribute rip metric 10000 metric-type 1 subnets
network 172.31.0.0 0.0.255.255 area 0
!
router rip
version 2
redistribute ospf 1 metric 5
network 10.0.0.0
no auto-summary

R2#

router ospf 1
redistribute rip metric 10000 metric-type 1 subnets
network 172.31.3.2 0.0.0.0 area 0
1
router rip version 2
redistribute ospf 1 metric 5
network 10.0.0.0 no auto-summary

R2 Routing Table After Redistribution

With OSPF and RIP running RIP COSPF		
R2#show ip route <output omitted=""></output>		
Gateway of last resort is not set		
172.31.0.0/24 is subnetted, 7 subnets		
0 172.31.55.0 [110/2343] via 172.31.3.3, 00:09:46, Serial0/0/0		
C 172.31.3.0 is directly connected, Serial0/0/0		
0 172.31.2.0 [110/1562] via 172.31.3.3, 00:09:46, Serial0/0/0		
10.0.0/8 is variably subnetted, 3 subnets, 2 masks		
O E1 10.3.1.0/24 [110/10781] via 172.31.3.1, 00:09:47, Serial0/0/0		
O E1 10.3.3.0/24 [110/10781] via 172.31.3.1, 00:04:51, Serial0/0/0		
C 10.3.2.0/24 is directly connected, fastethernet0/0		
O E1 10.200.200.31/32 [110/10781] via 172.31.3.1, 00:09:48, Serial0/0/0		
O E1 10.200.200.34/32 [110/10781] via 172.31.3.1, 00:04:52, Serial0/0/0		
C 10.200.200.32/32 is directly connected, Loopback0		
O E1 10.200.200.33/32 [110/10781] via 172.31.3.1, 00:04:52, Serial0/0/0		
O E2 10.254.0.0/24 [110/50] via 172.31.3.3, 00:09:48, Serial0/0/0		

R2 includes suboptimal paths and loops.

Modifying Administrative Distance

```
hostname R1
                                               hostname R2
router ospf 1
                                               router ospf 1
                                                redist rip metric 10000 metric-t 1 subnets
 redist rip metric 10000 metric-t 1 subnets
network 172.31.0.0 0.0.255.255 area 0
                                                network 172.31.3.2 0.0.0.0 area 0
distance 125 0.0.0.0 255.255.255.255 64
                                                distance 125 0.0.0.0 255.255.255.64
router rip
                                               router rip
                                                version 2
version 2
 redistribute ospf 1 metric 5
                                                redistribute ospf 1 metric 5
network 10.0.0.0
                                                network 10.0.0.0
no auto-summary
                                                no auto-summary
access-list 64 permit 10.3.1.0 0.0.0.255
                                               access-list 64 permit 10.3.1.0 0.0.0.255
access-list 64 permit 10.3.3.0 0.0.0.255
                                               access-list 64 permit 10.3.3.0 0.0.0.255
access-list 64 permit 10.3.2.0 0.0.0.255
                                               access-list 64 permit 10.3.2.0 0.0.0.255
access-list 64 permit 10.200.200.31
                                               access-list 64 permit 10.200.200.31
                                               access-list 64 permit 10.200.200.34
access-list 64 permit 10.200.200.34
access-list 64 permit 10.200.200.32
                                               access-list 64 permit 10.200.200.32
                                               access-list 64 permit 10.200.200.33
access-list 64 permit 10.200.200.33
```
R2 Routing Table After Modifying AD

With OSPF changing administrative distance

	RIP OSPF					
Ga	ateway of last resort is not set					
	172.31.0.0/16 is variably subnetted, 8 subnets, 2 masks					
0	172.31.55.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0					
С	172.31.33.0/24 is directly connected, Serial0/0/0					
0	172.31.33.1/32 [110/1562] via 172.31.33.4, 00:00:01, Serial0/0/0					
0	172.31.33.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0					
0	172.31.44.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0					
0	172.31.22.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0					
0	172.31.11.4/32 [110/781] via 172.31.33.4, 00:00:03, Serial0/0/0					
0	172.31.66.4/32 [110/781] via 172.31.33.4, 00:00:03, Serial0/0/0					
	10.0.0.0/8 is variably subnetted, 8 subnets, 2 masks					
R	10.3.1.0/24 [120/2] via 10.3.2.4, 00:00:03, FastEthernet0/0					
R	10.3.3.0/24 [120/1] via 10.3.2.4, 00:00:03, FastEthernet0/0					
С	10.3.2.0/24 is directly connected, FastEthernet0/0					
R	10.200.200.31/32 [120/3] via 10.3.2.4, 00:00:04, FastEthernet0/0					
R	10.200.200.34/32 [120/1] via 10.3.2.4, 00:00:04, FastEthernet0/0					
С	10.200.200.32/32 is directly connected, Loopback0					
R	10.200.200.33/32 [120/2] via 10.3.2.4, 00:00:04, FastEthernet0/0					
0	E2 10.254.0.0/24 [110/50] via 172.31.33.4, 00:00:04, Serial0/0/0					

Router R2 prefers RIP routes.

Controlling Routing Update Traffic

Controlling Routing Update Traffic

Several ways how to control routing updates

Passive interfaces

No routing updates are sent through this kind of interface

Distribute list

 A distribute list allows a filter (ACL or prefix-list) to be applied to routing updates

Route-map

- Conditions CAN be tested against a route in routing update. Actions CAN be taken to modify attributes of the packet or route.
- Some routing protocols allow using route-map even in distributed list or neighbor command

The passive-interface Command (1)

- Passive interface prevents routing updates from being sent through an interface.
 - Passive interface configured for RIP protocol however accepts RIP packets – IF this is undesired behavior THEN ACL MUST be used
 - Passive interface configured for routing protocols using Hello packets (EIGRP, OSPF, IS-IS) doesn't receive or send packets

Routing protocol	Suppresses outgoing routing updates	Suppresses incoming routing updates	Stops neighbor adjacency
RIP	\checkmark		
EIGRP	\checkmark	\checkmark	\checkmark
OSPF	\checkmark	\checkmark	\checkmark
IS-IS	\checkmark	\checkmark	\checkmark

The passive-interface Command (2)

- This command is used to set either a particular interface or all router interfaces to passive
 - Set particular interface as a passive interface using passive-interface IFACE
 - Set all interface using passive-interface default and then enable particular interface using no passive-interface IFACE

Distribute List (1)

- Distribute list allows filtering to be applied to routing updates so unwanted networks can go through
 - Distribute list makes reference to an access list or a prefix list
- Different behavior for different IGP
 - For distance-vector protocols (RIP, EIGRP, IGRP)
 - Distribute list CAN filter any sent or received network
 - OSPF in
 - Routes CAN NOT be filtered from entering the OSPF LSDB, they are only filtered from entering the routing table
 - OSPF out
 - Only external routes redistributed by ASBR CAN be filtered, but NOT intra-area or inter-area routes

Distribute List (2)

Configuration snippet:

```
Router(config-router)# distribute-list
{ 1-199 | 1300-2699 | NAME | prefix NAME | route-map NAME }
{in | out} [interface]
```

Parameters:

- Reference to ACL number, named ACL, prefix-list or route-map
- in/out: applies the distribution list to incoming/outgoing direction or interface
- NOT all parameters or combination of parameters are valid

Distribute List together with ACL

- According to the ACL type, different field in a packet is checked
 - Standard ACL checks only network IP address
 - Extended ACL checks next-hop (source part in the ACL) and destination IP network address (destination part in the ACL)
 - Useful for debugging is rule: permit ip any any log

Actions:

- **permit**: permits sending or receiving given network
- deny: denied sending or receiving given network

Example:

"Remove all networks 10.*.*.* and network 192.168.1.0"

```
access-list 1 deny 10.0.0.0 0.255.255.255
access-list 1 deny 192.168.1.0 0.0.0.0
access-list 1 permit any
```

Example:

"Only network 172.16.*.* is allowed from next-hop address 1.2.3.4"

access-list 100 permit ip host 1.2.3.4 172.16.0.0 0.0.255.2

Distribute List together with Prefix List (1)

- Using ACL in distribute list as route filter has several drawbacks
- Prefix list allows same filtering but with performance improvement and more user-friendly command-line interface
- Prefix list is list of network prefixes together with netmasks and permit/deny rules

Router(config) # ip prefix-list NAME [seq N] {permit | deny} NETWORK/LENGTH [ge D] [le U]

Parameters:

- seq N: sequence number of prefix-list statement
- NETWORK/LENGTH: prefix to be matched and the length of the prefix
- ge D: network mask has to be at least / D long
- Ie U: network mask has to be at most /U long
 - *LENGTH* <= *D* <= *U* <= 32

Distribute List together with Prefix List (2)

• Example:

(conf) # ip prefix-list PL permit 192.0.2.0/26 ge 28 le 31

- Satisfy every network A.B.C.D/M that meets following requirements
 - A.B.C.D & 255.255.255.192 = 192.0.2.0
 - **255.255.255.240** ≤ M ≤ **255.255.255.254**
 - An exact match is assumed when neither ge nor le is specified

Which PL matches all routes?

ip prefix-list PL_ALL permit 0.0.0.0/0 le 32

Distribute List: Prefix List vs. ACL

- Prefix lists are more effective than ACL PL is internally transformed into tree structure
- PL should be used for filtering routing updates instead of ACL
- PL is only useful for routing information control management
 CAN NOT be used as an ACL replacement for e.g. control user traffic
- Prefix list and ACL ends with implicit deny any rule
 - Every network that is NOT allowed is rejected

Route-map

- Route-maps work like ACL but more sophisticated they allow some conditions to be tested against the packet or route using IF-THEN-ELSE rules
- Each route-map consists of several statements
 - Route-map statement has test, change, action blocks
 - IF statement's conditions are matched THEN permit/deny is executed and some actions MAY be taken to modify attributes of the packet ELSE next statement is going to be evaluated

Processing is similar to ACL

- The route-map statements are executed in a sequence
- First match execute the action together with changes and route-map evaluation ends
- Implicit default match any / deny at the end of a route-map
- Route-map statements are numbered

Route-map Applications

Route filtering during redistribution

Route maps offer an easy way how to manipulate routing metrics

Policy-based routing (PBR)

 PBR allows the operator to define routing policy other than basic destination-based routing using the routing table

BGP

 Route maps are the primary tools for implementing BGP policy and manipulation of BGP path attributes

NAT

 Route maps have better control which private addresses are translated to public addresses

Route-map Statement

- Route-map statement has several blocks
 - Optional part for testing the condition (match), optional part for change the packet (set) and mandatory part for action (permit/deny)
- Blocks are checked from line to line (top-down) looking for a match
- Each line is sequence-numbered

```
route-map my_bgp permit 10
    { match statements }
    { match statements }
    { set statements }
    { set statements }
    route-map my_bgp deny 20
    :: :: :: ::
    route-map my_bgp permit 30
    :: :: :: ::
    :: :: ::
```

Route-map Statement

- Multiple match criteria in the same line are allowed
 - The criteria are processed using OR logic
- Separate match criteria can also be applied vertically under a route map line
 - In this case, each match uses AND logic
- Successful match executes the permit/deny action

The route-map command

Defines the route map statement action

Router (config) #

route-map map-tag [permit | deny] [sequence-number]

Defines the conditions to match

Router(config-route-map)# match {conditions}

Defines the action to be taken on a match

Router(config-route-map)# set {actions}

 Allows for detailed control of routes being redistributed into a routing protocol

Router (config-router) #

redistribute protocol [process-id] route-map map-tag

The match command

- The match commands specify criteria to be matched
- The associated route map statement permits or denies the matching routes

Command	Description
match community	Matches a BGP community
match interface	Matches any routes that have the next hop out of one of the interfaces specified
match ip address	Matches any routes that have a destination network number address that is permitted by an ACL or prefix list
match ip next-hop	Matches any routes that have a next-hop router address that is passed by one of the ACLs specified
match ip route-source	Matches routes that have been advertised by routers and access servers at the address that is specified by the ACLs
match length	Matches based on the layer 3 length of a packet
match metric	Matches routes with the metric specified
match route-type	Matches routes of the specified type
match tag	Matches tag of a route

The set Command

The set commands modify matching routes (parameters of redistributed routes)

Command	Description
set as-path	Modifies an AS path for BGP routes
set automatic-tag	Computes automatically the tag value
set community	Sets the BGP communities attribute
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination
set interface	Indicates where to output packets that pass a match clause of a route map for policy routing
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing
set level	Indicates where to import routes for IS-IS and OSPF
set local-preference	Specifies a BGP local preference value
set metric	Sets the metric value for a routing protocol
set metric-type	Sets the metric type for the destination routing protocol
set tag	Sets tag value for destination routing protocol
set weight	Specifies the BGP weight value

Route-map: Example

```
R1(config)# access-list 23 permit 10.1.0.0 0.0.255.255
R1(config)# access-list 29 permit 172.16.1.0 0.0.0.255
R1(config)# access-list 37 permit 10.0.0.0 0.255.255.255
R1(config)#
R1(config) # route-map REDIS-RIP permit 10
R1(config-route-map) # match ip address 23 29
R1(config-route-map) # set metric 500
R1(config-route-map) # set metric-type type-1
R1(config-route-map)#
R1(config-route-map) # route-map REDIS-RIP deny 20
R1(config-route-map) # match ip address 37
R1(config-route-map)#
R1(config-route-map) # route-map REDIS-RIP permit 30
R1(config-route-map) # set metric 5000
R1(config-route-map) # set metric-type type-2
R1(config-route-map)#
R1(config-route-map) # router ospf 10
R1(config-router) # redistribute rip route-map REDIS-RIP subnets
R1(config-router)#
```

- Routes matching either access list 23 or 29 are redistributed with an OSPF cost of 500, external type 1
- Routes permitted by access list 37 are not redistributed
- All other routes are redistributed with an OSPF cost metric of 5000, external type 2

Route-map together with ACL

- Route-map used for redistribution often use ACL for network filtering
 - Network = IP address and netmask
- Once again different behavior according to ACL type
- Redistributed networks are matched according to ACL type
 - Standard ACL matches only IP network address not the netmask
 - Extended ACL matches IP network address and netmask

This mess only leads to recommendation of using prefixlists instead of ACLs for network filtering [©]

Filtering Routing Updates

Loop Prevention with Tagging

Topology

Tagging Redistributed Direction

```
hostname R1
                                          hostname R2
router ospf 1
                                          router ospf 1
 redist rip metric 10000 metric-type 1
                                           redist rip metric 10000 metric-type 1
   route-map r2o subnets
                                             route-map r2o subnets
network 172.31.0.0 0.0.255.255 area 0
                                           network 172.31.3.2 0.0.0.0 area 0
router rip
                                          router rip
version 2
                                           version 2
 redist ospf 1 metric 5 route-map o2r
                                           redist ospf 1 metric 5 route-map o2r
network 10.0.0.0
                                           network 10.0.0.0
                                           no auto-summary
no auto-summary
route-map r2o deny 10
                                          route-map r2o deny 10
 match tag 110
                                            match tag 110
route-map r2o permit 20
                                          route-map r2o permit 20
 set tag 120
                                            set tag 120
                                          route-map o2r deny 10
route-map o2r deny 10
 match tag 120
                                            match tag 120
route-map o2 permit 20
                                          route-map o2r permit 20
                                            set tag 110
  set tag 110
```

Know Your Network

- IF the network from one IGP is distributed in other IGP with higher AD as in previous IGP THEN routing loops MAY occur
- Be very familiar with your network BEFORE implementing redistribution
- Focus on routers border routers with redundant paths
- Make sure no path information is lost when using the distance command

Offset List

Offset List

- Offset list can increase the metric of given network in RIP or EIGRP protocols
 - Network metric can be increased for announced or received networks
 - Offset list can be used for routing protocol or for announced/received networks on particular interface
- Created by offset-list referencing an ACL
 - Offset value is added to RIP metric or in case of EIGRP to Delay parameter

The offset-list Command

Offset list is configured under routing protocol subsection:

Router(config-router)# offset-list {acl-number | acl-name}
 {in | out} offset [interface-type interface-number]

Parameter	Description
acl-number aclname	Standard access list number or name to be applied. Access list number 0 indicates all networks.
in	Offset list is use for incoming RIP/EIGRP messages
out	Offset list is use for outgoing RIP/EIGRP messages
offset	Positive offset to be applied to metrics for networks matching the access list. If the offset is 0, no action is taken.
interface-type interface-number	(Optional) Interface type and number to which the offset list is applied.

Offset List: Example

- Two paths exist for end devices in the R1 LAN network to the ISP network 192.0.2.0/24
- R5 has lower metric, however with very slow link
- Offset-list can increase the metric so the upper path through R3 will be preferred
 - Offset-list increases the metric of 192.0.2.0/24 network received from R5 by 2

IP Policy Based Routing

Policy Based Routing

- PBR allows administrator to define a routing policy other than basic destination-based routing using the routing table
 - Source and destination address match
 - Protocol type, size of packets …

PBR uses route-map

- match selects the packets
- Permit action packets are forwarded according to PBR
 - set defines how the packet should be forwarded
 - set ip next-hop, set interface, set ip default next-hop, set default interface
- Deny action packets are forwarded according to the routing table
- Route-map is applied on ingress interface

Router(config-if) # ip policy route-map NAME

Example of PBR

Policy routing on RTA can be used to route traffic based on its source network, in addition to its destination. Traffic from the 192.168.1.0 network will use the link to ISP1. Traffic from the 172.16.1.0 network will use the link to ISP2.

PBR Configuration

IP Service Level Agreement (IP SLA)

Multi-homed Connection (1)

- The R1 edge router is configured to perform NAT, and has two default routes for outbound traffic to two ISPs
- The two static default routes are configured on R1
 - Router will use load balancing over the links by default
 - IF primary link fails THEN secondary will be used
Multi-homed Connection (2)

- Problem can occur in ISP1 inner network
 - R1 sees the link to ISP1 as functional
 - Forwarded data will be lost
- Possible solution:
 - Routing protocol between ISP and customer
 - Impractical for smaller branch offices, and in any case requires interaction and integration with the ISPs

Multi-homed Connection ③

- Another solution is to use static routes or PBR, but make them subject to reachability tests
 - E.g. DNS server of mail server
 - IF the test fails THEN static route will be removed from routing table

IP Service Level Agreements provides availability tests

Managing Routing Using IP SLAs

- Cisco IOS IP Service Level Agreements (SLAs) use active traffic monitoring
- Cisco IOS IP SLAs tests send simulated data and measure performance between network locations
- Administrator can set the requirements needed to satisfy the test
- IP SLA tests CAN run between:
 - Cisco devices
 - Cisco device and an IP host (only limited set of tests)

Cisco IOS IP SLAs

- Possible parameters:
 - Network resource availability
 - Response time
 - One-way latency
 - Jitter
 - Packet lost
 - Voice quality scoring
 - Application performance

IP SLA Sources, Responders and Operation

 IP SLA operation is measurement that includes protocol, frequency, traps and thresholds

IP SLA source sends testing data to destination

- All test are configured on SLA source
- SLA source use control protocol to communication with responder before the test starts (agreement on TCP/UDP ports, test type etc.)
- Source and responder have to use time synchronization (NTP)
- IP SLA responder allows to anticipate and respond to IP SLAs request packets

IP SLAs Operations

- IP SLA against device without SLA responder (web server or IP station)
 - E.g. ping test

- IP SLA against device with SLA responder running (e.g. Cisco router)
 - More powerful test or more accurate results

Configuration Steps

- 1. Define SLA operation (probe)
- 2. Scheduling IP SLA operation
- 3. Define at least one tracking object and define action associated with the tracking object
- Note:
 - Available from IOS 12.4(4)T, 12.2(33)SB and 12.2(33)SXI, command ip sla monitor is replaced by command ip sla

Step 1 – Define SLA Operation (1)

1. Defining SLA operation

Router(config) # ip sla operation-number

Parameter operation-number is ID of operation

```
R1(config) # ip sla 1
R1(config-ip-sla) # ?
IP SLAs entry configuration commands:
    dhcp DHCP Operation
    dns DNS Query Operation
    exit Exit Operation Configuration
    icmp-echo ICMP Echo Operation
    icmp-jitter ICMP Jitter Operation
    ...
R1(config-ip-sla) #
```

Step 1 – Define SLA Operation (2)

PING probe against non-responder node:

Router(config-ip-sla)# icmp-echo {destination-ip-address |
 destination-hostname} [source-ip {ip-address | hostname} |
 source-interface interface-name]

Parameter	Description
destination-ip-address destination-hostname	Destination IPv4/IPv6 address
source-ip { <i>ip-address</i> <i>hostname</i> }	(Optional) Sets source IPv4/IPv6 address
<pre>source-interface interface-name</pre>	(Optional) Sets the interface IP address as a source

Note:

Starting from IOS 12.4(4)T, 12.2(33)SB and 12.2(33)SXI command type echo protocol ipIcmpEcho is replaced by command icmp-echo

The icmp-echo Command

Configuration options:

```
R1(config-ip-sla)# icmp-echo 209.165.201.30
R1(config-ip-sla-echo)# ?
IP SLAs echo Configuration Commands:
  default
                     Set a command to its defaults
                     Exit operation configuration
  exit
  frequency
                     Frequency of an operation
 history
                     History and Distribution Data
                     Negate a command or set its defaults
  no
                     Owner of Entry
  owner
  request-data-size Request data size
                     User defined tag
  taq
                     Operation threshold in milliseconds
  threshold
  timeout
                     Timeout of an operation
                     Type Of Service
  tos
 verify-data
                     Verify data
  vrf
                     Configure IP SLAs for a VPN Routing/Forwarding in-stance
R1(config-ip-sla-echo)#
```

Router(config-ip-sla-echo)# frequency seconds
Router(config-ip-sla-echo)# timeout milliseconds

Step 2 – Scheduling IP SLA Operation

2. IP SLA operation needs to be scheduled

```
Router(config)#
ip sla schedule operation-number [life {forever |
   seconds}] [start-time {hh:mm[:ss] [month day | day
   month] | pending | now | after hh:mm:ss}]
   [ageout seconds] [recurring]]
```

Note:

 Starting from IOSu 12.4(4)T, 12.2(33)SB and 12.2(33)SXI the command ip sla monitor schedule is replaced by ip sla schedule

Step 3 – Creating Tracking Object

3. Creating tracking object:

Router(config) # track object-number ip sla operationnumber {state | reachability}

Parameter	Description
object-number	Tracking object number from 1 to 500
operation-number	Number used for the identification of the IP SLAs operation you are tracking
state	Tracks the operation return code
reachability	Tracks the reachability

Note:

 Starting from IOSu 12.4(20)T, 12.2(33)SXI1 and 12.2(33)SRE the command track rtr is replaced by track ip sla

IS SLAs on Multi-homed Connection Example

Useful Commands

- show ip protocols
- show ip policy
- show route-map [map-name]
- debug ip policy
- show ip sla configuration
- show ip sla statistics

Where to go next?

- Commonly Used IP ACLs
 - http://cisco.com/en/US/tech/tk648/tk361/technologies_configuration_example09186a 0080100548.shtml
- Default Passive Interface Feature
 - http://cisco.com/en/US/products/sw/iosswrel/ps1830/products_feature_guide09186a0 08008784e.html
- Route-Maps for IP Routing Protocol Redistribution Configuration
 - http://cisco.com/en/US/tech/tk365/technologies_tech_note09186a008047915d.shtml
- IP SLA Configurations
 - http://www.cisco.com/en/US/docs/ios/12_4/ip_sla/configuration/guide/hsoverv.html
- The Cisco IOS IP SLAs Command Reference:
 - http://www.cisco.com/en/US/docs/ios/ipsla/command/reference/sla_book.html
- Cisco OER
 - http://www.cisco.com/en/US/tech/tk1335/tsd_technology_support_subprotocol_home.html

Slides adapted by Matěj Grégr (and extended by <u>Vladimír Veselý</u>) partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

Last update: 2012-09-09