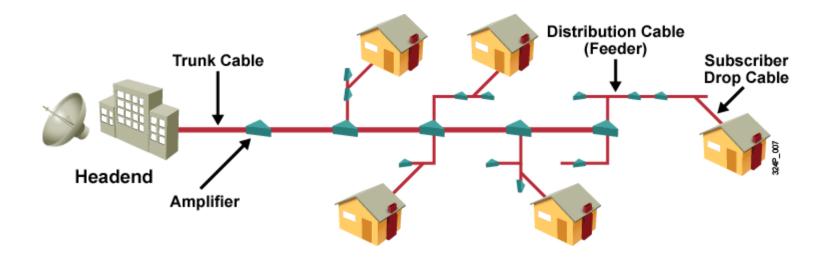
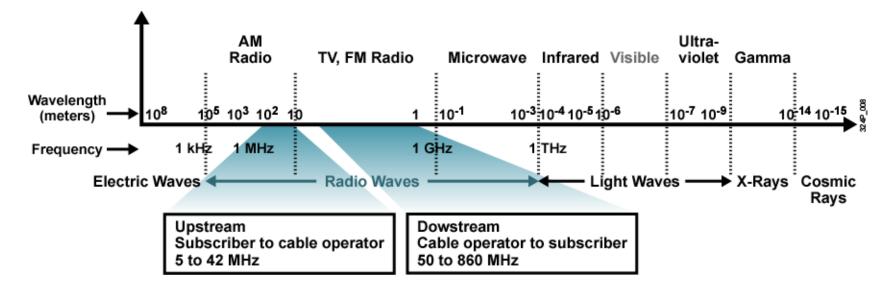
·IIIII CISCO

Internet Connectivity

ROUTE Module 6


Agenda

- Introduction
- Cable Antenna TV
- Digital Subscriber Line
- Tunneling
- IPsec


CATV

What Is Cable Network?

- CATV solved delivery of TV signal to places where signal receptions were poor
- Current CATV systems use combination of optical and coaxial cables to deliver not just TV but also (IP) data

Bandwidth Frequency

- Bandwidth between 5 and 860 MHz is used for data transfers
 - Downstream: 810 MHz (downstream BW)
 - Upstream: 37 MHz (upstream BW)
 - Guard band: protective separation BW between 42 and 50 MHz

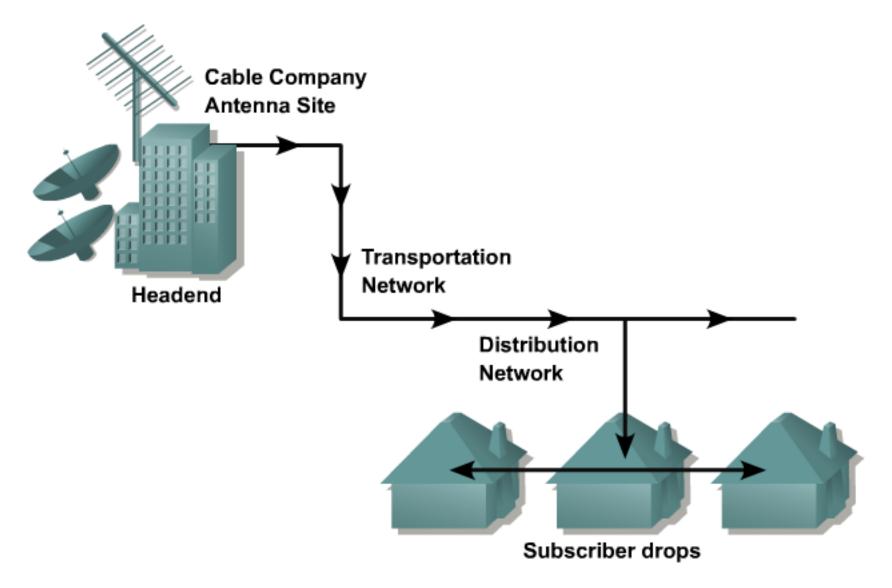
CATV System Components (1)

Antenna site (AS)

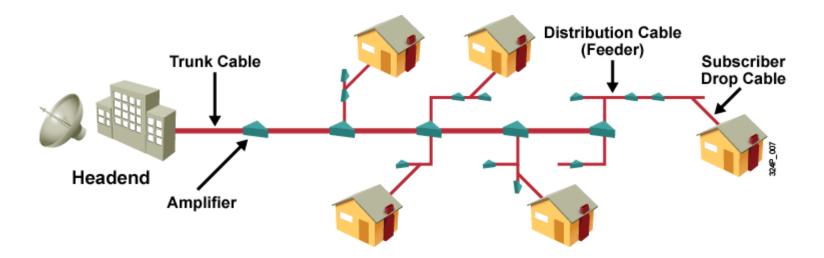
- Antenna is installed over here
- Headend, Head End (HE)
 - TV signal from antenna is processed here

Transportation Network (TN)

Network interconnecting AS and HE or HE and DN

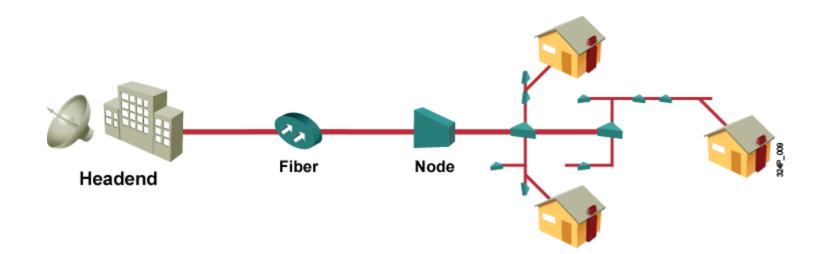

Distribution Network (DN)

Network between subscribers

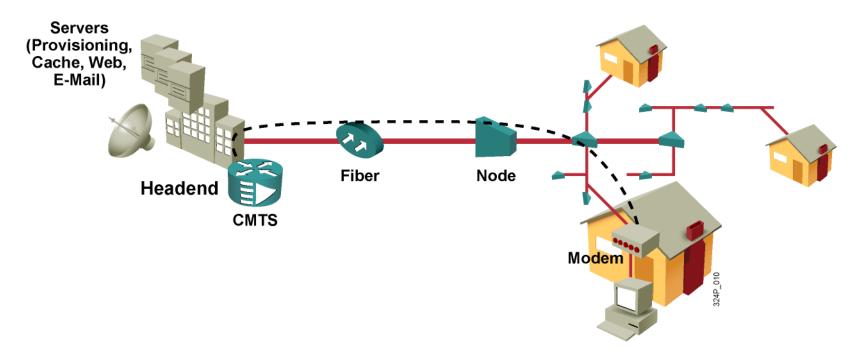

Subscriber Drop

 Cable and necessary technical equipment (set-top box) interconnection subscriber to DN

CATV System Components (2)



Old CATV Architecture


- Cabling is divided into two groups:
 - Trunk is backbone for service area (coax, 19 mm)
 - Trunk splits into feeders (coax, 13 mm)
 - Subscribers are connected via taps to feeders
- Range of this network is limited
 - Coaxial cable has signal attenuation
 - Amplifier regenerates not even signal but also noise

New CATV Architecture

- Hybrid Fiber Coax (HFC) = combination of optical and metallic cabling
- TN and nowadays even feeder are implemented via optical fiber
- Advantages
 - Reduces the number of amplifiers
 - Optical cable is more space convenient and protected against EMI
 - Covers longer distances

Data Transfers in CATV

- Two keynote devices
 - On customer side cable modem (CM)
 - On providers side concentrator (CMTS = cable modem termination system)
- Subscribers on one segment share BW
 - But are unable to communicate between each other all communication traverse CMTS first

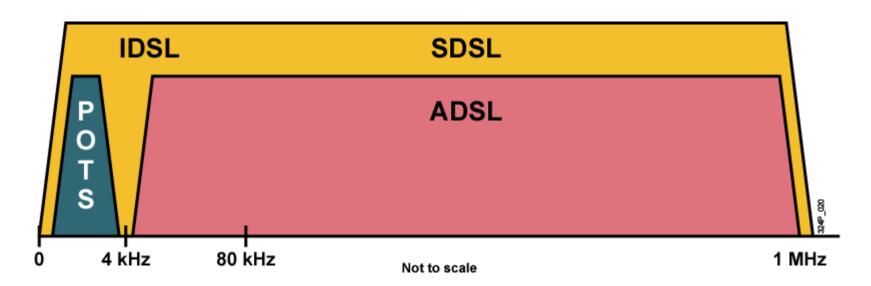
Throughput and Security Issues

- Users in one service are share coaxial cable resources
 - For one feeder there should be no more than 2000 subscribers
 - Number of amplifiers in cascade should be no more than 5
- Insufficient bandwidth could be solved with:
 - Allowing some TV channels for data transfers instead
 - Decreasing of service area size
- All technical and operational standards of CATV are inside...

DOCSIS

- Data Over Cable Service Interface Specification a.k.a.
 DOCSIS is international standard maintained by CableLabs
- In Europe slightly different BW for channels hence over here is EuroDOCSIS
- DOCSIS fully specifies behavior of CATV on L1 and L2 like channel width, modulation and access methods
- From v3 even standards on L3 (IPv6 management and deployment)
- Versions
 - 1.0 initial proposal
 - 1.1 extended technical specification
 - 2.0 support for QoS and symmetrical real-time applications
 - 3.0 support for channel bonding

DOCSIS Speeds


	Downstream Channel configuration						Upstream Channel configuration				
Version	Minimum selectable channels	Minimum channels supported by HW	Selected number of channels	Maximum number of channels	DOCSIS throughput	EuroDOCSIS throughput	Minimum selectable channels	Minimum channels supported by HW	Selected number of channels	Maximum number of channels	Throughput
1.x	1	1	1	1	42.88 (38) Mbit/s	55.62 (50) Mbit/s	1	1	1	1	10.24 (9) Mbit/s
2.0	1	1	1	1	42.88 (38) Mbit/s	55.62 (50) Mbit/s	1	1	1	1	30.72 (27) Mbit/s
3.0	1	4	m	No maximum defined	m × 42.88 (m × 38) Mbit/s	m × 55.62 (m × 50) Mbit/s	1	4	n	No maximum defined	n × 30.72 (n × 27) Mbit/s

Channel co	nfiguration	Downstream	Upstream		
Number of downstream channels	Number of upstream channels	DOCSIS	EuroDOCSIS	throughput	
4	4	171.52 (152) Mbit/s	222.48 (200) Mbit/s	122.88 (108) Mbit/s	
8	4	343.04 (304) Mbit/s	444.96 (400) Mbit/s	122.88 (108) Mbit/s	
16	4	686.08 (608) Mbit/s	889.92 (800) Mbit/s	122.88 (108) Mbit/s	
24	8	1029.12 (912) Mbit/s	1334.88 (1200) Mbit/s	245.76 (216) Mbit/s	
32	8	1372.16 (1216) Mbit/s	1779.84 (1600) Mbit/s	245.76 (216) Mbit/s	

What is Digital Subscriber Line?

- Classic telephone network transfer voice on local loop in frequency range between 300 and 3400 Hz
- Idea behind DSL is to use available bandwidth above 4 kHz for data transfer
 - Thanks to frequency separation voice and data could be transferred at the same time
 - Available speeds are much more faster than plain modem connection
- DSL is L1 technology

Terms

• xDSL

One of many DSL technology variants

DSL Access Multiplexor (DSLAM)

 Device on DSL service provider side (telephone exchange) which serves as concentrator of DSL users

Broadband Remote Access Server (BRAS)

- Router on DSL service provider side which processes data flows of each DSL user
- BRAS terminates ATM VC from subscribers and sends their traffic via L2TP to ISP

Splitter

Frequency separator for voice (bellow 4 kHz) and data (above 4 kHz)

Microfilter

Low-pass frequency filter for telephone

Basic Facts

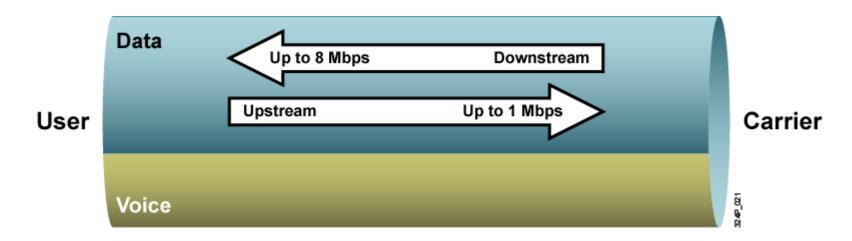
- DSL is always-on technology
 - DSL works directly on telephone link hence there's no initial dialup
 - DSL modem connects to closest DSLAM
- DSL service provider (DSL SP) and internet service provider (ISP) are strictly differentiated when using DSL
 - DSL SP is telephone operator
 - Data from subscriber are transferred through DSLAM to BRAS and from BRAS via L2TP to IP center of ISP
 - ISP is first one which concerns about L3 content of IP packet
- Data between DSL modem and DSLAM are transferred as ATM cells – design choice with many good aspects
 - To understand whole set of encapsulation processes in DSL is slightly more complicated ⁽²⁾

DSL Variants 1

- There exists many different DSL technology variants!
- Differences rely in many properties:
 - Symmetric vs. asymmetric download/upload speed nature
 - Number of used pair in wiring (1 or 2 pairs)
 - Maximal available speed for both directions
 - Channel modulation
 - Support of voice and data coexistence
 - Maximal distance of wiring

DSL Variants (2)

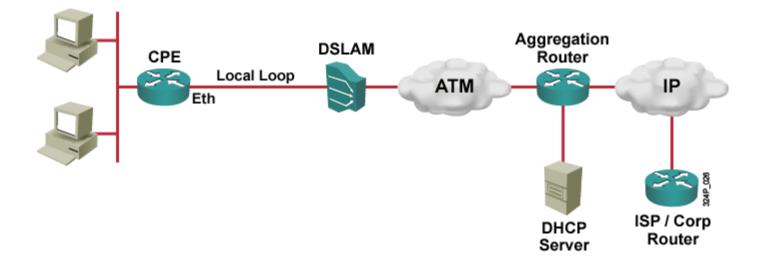
DSL Technology	Nature	Max speed (Down / Up)	Voice + Data
ADSL2+	Asymmetric	24 M / 1.4 M	Yes
ADSL2	Asymmetric	12 M / 3.5 M	Yes
ADSL	Asymmetric	8 M / 1 M	Yes
VDSL	Symmetric or Asymmetric	52 M / 13 M	Yes
IDSL	Symmetric	144 k / 144 k	No
SDSL	Symmetric	768 k / 768 k	No
HDSL	Symmetric	2 M / 2 M	No
G.SHDSL	Symmetric	2.3 M / 2.3 M	No


Factors Influencing Speed and Range

- Signal attenuation
- Bridge tap: Cable end connected to the local loop
- Load coil: A loading coil is a wrap of wire placed at specific intervals along the local loop that extends the local loop distance

Wire gauge

- Impedance mismatch: Noise or an echo in the local loop that is caused by changes in wire gauge, wire splices, or corrosion is called impedance mismatch
- Crosstalk
- AM radio interference
- Fiber-optic cable

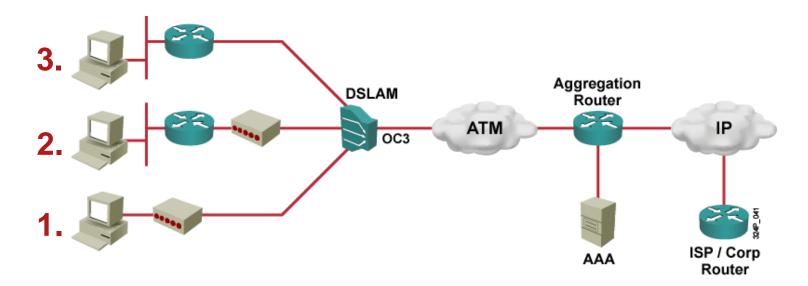

Asymmetric DSL

ADSL exists on the same twisted-pair telephone line as the POTS

Version	Standard name	Common name	Common name Downstream rate		Approved in
ADSL	ANSI T1.413-1998 Issue 2	ADSL	08.08.0 Mbit/s	1.0 Mbit/s	1998
ADSL	<u>ITU G.992.1</u>	ADSL (<u>G.DMT</u>)	12.0 Mbit/s	1.3 Mbit/s	1999-07
ADSL	<u>ITU G.992.1 Annex A</u>	ADSL over POTS	12.0 Mbit/s	1.3 Mbit/s	2001
ADSL	<u>ITU G.992.1 Annex B</u>	ADSL over ISDN	12.0 Mbit/s	1.8 Mbit/s	2005
ADSL	<u>ITU G.992.2</u>	ADSL Lite (<u>G.Lite</u>)	01.51.5 Mbit/s	0.5 Mbit/s	1999-07
ADSL2	<u>ITU G.992.3</u>	ADSL2	12.0 Mbit/s	1.3 Mbit/s	2002-07
ADSL2	ITU G.992.3 Annex J	ADSL2	12.0 Mbit/s	3.5 Mbit/s	
ADSL2	ITU G.992.3 Annex L	RE-ADSL2	05.05.0 Mbit/s	0.8 Mbit/s	
ADSL2	<u>ITU G.992.4</u>	splitterless ADSL2	01.51.5 Mbit/s	0.5 Mbit/s	2002-07
ADSL2+	<u>ITU G.992.5</u>	ADSL2+	24.0 Mbit/s	1.3 Mbit/s	2003-05
ADSL2+	ITU G.992.5 Annex M	ADSL2+M	24.0 Mbit/s	3.3 Mbit/s	2008

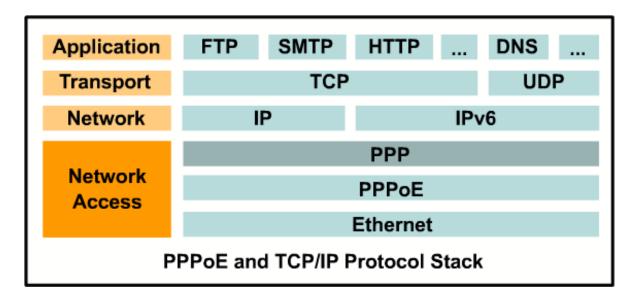
Data Transfers in ADSL

- IP packets in ADSL are carried in ATM cells
- Differences between ADSL data transfers rely in the way how IP packets are delivered to BRAS
- Three approaches
 - 1. RFC 1483/2684 Bridged
 - 2. **PPPoE** (PPP over Ethernet, switched solution)
 - 3. **PPPoA** (PPP over ATM, routed solution)


Why PPP?

- Most ADSL users are commercial customers
- Commerce is usually closely connected with problems like
 - Identification of user and following authentication with username and password
 - Independence on access to medium or DSL SL
 - Accounting of access and data delivery
- Plain transfer of IP packets in ATM cells doesn't allow above features to be easily implemented
 - Access method behind RFC 1483/2684 Bridged
- Point-to-Point Protocol has all of those features
- Idea behind PPPoE or PPPoA is to encapsulate IP packets into PPP and then transfer them through ADSL network

PPPoE


PPP over Ethernet (PPPoE)

Options how to deploy PPPoE on DSL:

- 1. On PC is PPPoE client SW installed, modem has Ethernet and DSL interface
- 2. On PC is just TCP/IP, router has built-in PPPoE client inside, modem has Ethernet and DSL interface
- 3. On PC is just TCP/IP, router has built-in DSL modem and PPPoE client

PPPoE Protocol Stack

Encapsulation order in PPPoE (<u>RFC 2516</u>) is

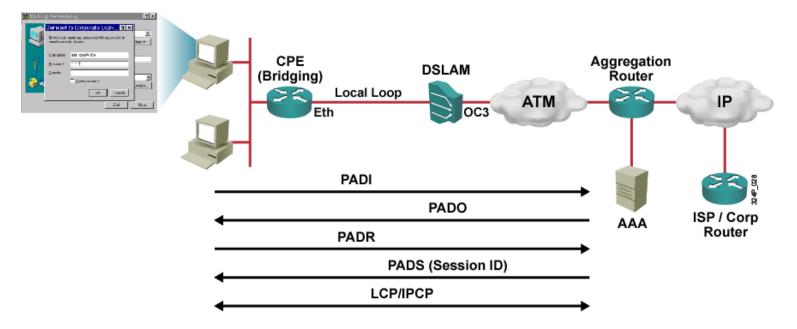
$\textbf{TCP/UDP} \rightarrow \textbf{IP} \rightarrow \textbf{PPP} \rightarrow \textbf{PPPoE} \rightarrow \textbf{Ethernet}$

- PPPoE defines helper 6B long header on L2 right between PPP and Ethernet
 - Purpose of PPPoE is to identify PPPoE session

PPPoE Variants

PPPoE could be deployed on two interface types

- 1. Ethernet
- 2. ATM (DSL interface)


1. **PPPoEoE (PPPoE over Ethernet)**

- Data encapsulated into PPP, PPPoE and Ethernet header are send out through Ethernet interface
- Typical option for SW PPPoE clients and for routers communicating with DSL modem through Ethernet interface

2. PPPoEoA (PPPoE over ATM)

- Data encapsulated into PPP, PPPoE and Ethernet header are send out through ATM interface
- Typical for routers with built-in DSL modem
- DO NOT mistake previous two modes with PPPoA!!!

Creating PPPoE Session

PPPoE Active Discovery Initiation

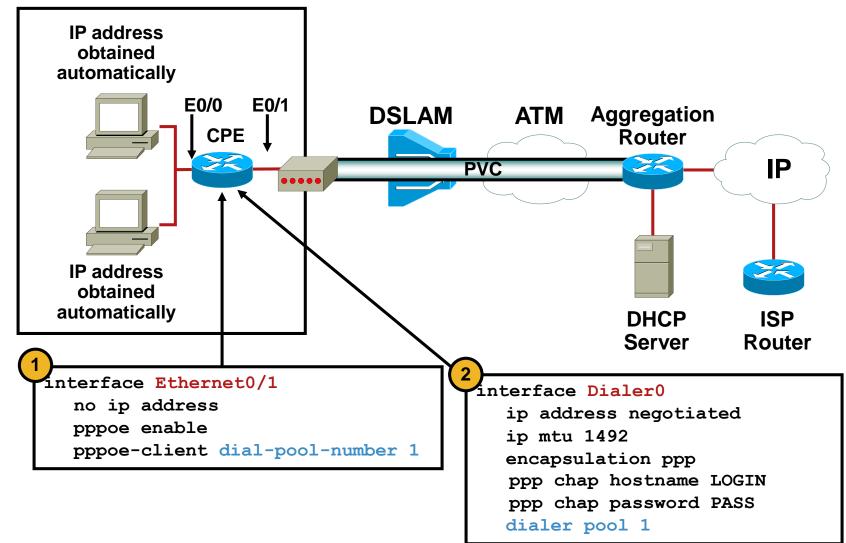
Determine MAC address of BRAS

PPPoE Active Discovery Offer

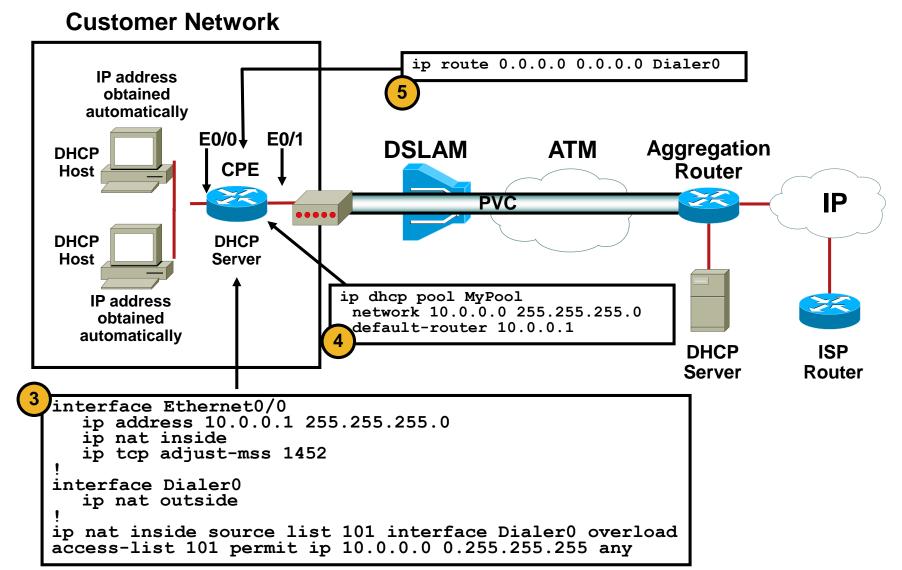
 Response from BRAS consists of MAC address, name and other info

PPPoE Active Discovery Request

Signing of client to BRAS


- PPPoE Active Discovery Session-confirmation
 - Session ID assignment to client
- PPPoE Active Discovery Termination
 - Tear down PPPoE session

Configuration Steps of PPPoE


- Not necessarily in that order:
 - Configuration of egress Ethernet/ATM interface (according to PPPoEoE or PPPoEoA)
 - Configuration of Dialer interface
 - Routing configuration
 - Decrementing MTU to 1492B on egress interface
 - Decrementing TCP MSS to 1452B on ingress interface
 - Configuration of "sideway things" (DHCP, NAT/PAT, firewall, ...)

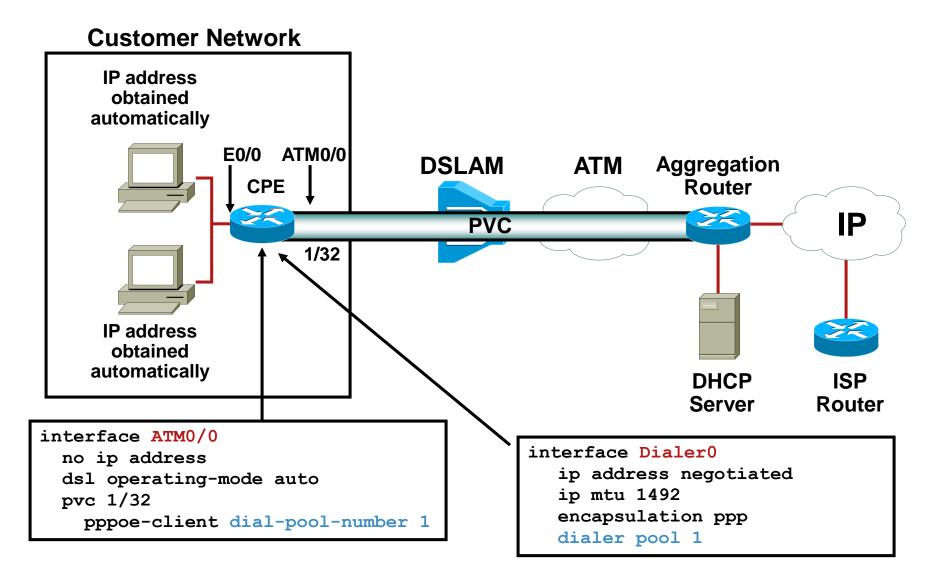
Configuring PPPoEoE ①

Customer Network

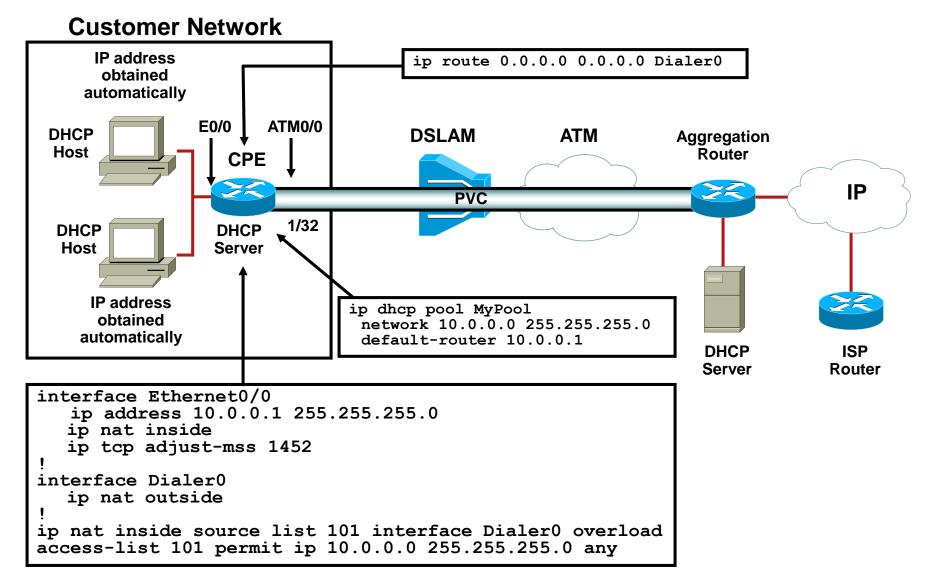
Configuring PPPoEoE (2)

Why Alter MTU and MSS? (1)

- MTU = maximal allowed length of packet that could traverse through interface
- MSS = maximal allowed length of TCP segment
- It's important to notice, that...
 - PPP header itself has 2B
 - PPPoE header itself has 6B
 - This overhead takes from usual 1500B MTU 8B
- Therefore it's necessary on egress interface (Dialer) lower MTU on value 1492B
 - Command ip mtu 1492 on interface
 - Packets exceeding this value will be fragmented


Why Alter MTU and MSS? (2)

- Issue with length of TCP segment
 - Standard length of MSS is MTU 40B (20B for IPv4 header, 20B for TCP header)
 - Packets with maximally length 1460B would traverse through DSL router
 - When sending out those packets unnecessary fragmentation could take place
 - That increases risk of flapping or slow TCP connections
- Solution is to decrement MSS to value1452B on ingress interface
 - Command ip tcp adjust-mss causes rewriting of MSS field in all SYN packets


Final PPPoEoE Configuration

```
hostname CPE
ip dhcp pool MyPool
network 10.0.0.0 255.0.0.0
default-router 10.0.0.1
interface Ethernet0/1
no ip address
pppoe enable
pppoe-client dial-pool-number 1
interface Ethernet0/0
 ip address 10.0.0.1 255.0.0.0
ip nat inside
 ip tcp adjust-mss 1452
interface Dialer0
 ip address negotiated
ip mtu 1492
encapsulation ppp
dialer pool 1
ip nat outside
ppp chap hostname mylogin
ppp chap password mysecret
ip nat inside source list 101 interface Dialer0 overload
access-list 101 permit ip 10.0.0.0 0.255.255.255 any
ip route 0.0.0.0 0.0.0.0 Dialer0
```


Final PPPoEoA Configuration

```
hostname CPE
ip dhcp pool MyPool
network 10.0.0.0 255.0.0.0
default-router 10.0.0.1
interface ATM0/0
no ip address
dsl operating-mode auto
pvc 1/32
 pppoe-client dial-pool-number 1
interface Ethernet0/0
ip address 10.0.0.1 255.0.0.0
ip nat inside
ip tcp adjust-mss 1452
interface Dialer0
ip address negotiated
ip mtu 1492
encapsulation ppp
dialer pool 1
ip nat outside
ppp chap hostname mylogin
ppp chap password mysecret
ip nat inside source list 101 interface Dialer0 overload
access-list 101 permit ip 10.0.0.0 0.255.255.255 any
ip route 0.0.0.0 0.0.0.0 Dialer0
```

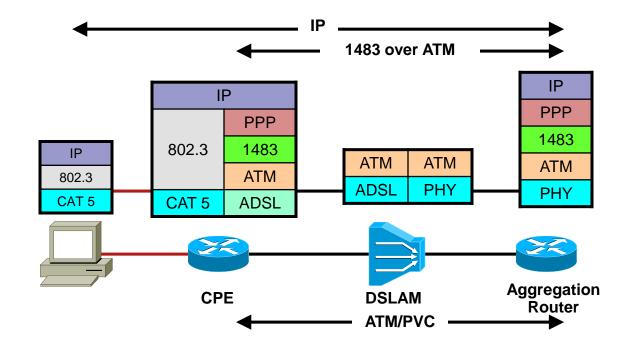
PPPoEoE vs. PPPoEoA

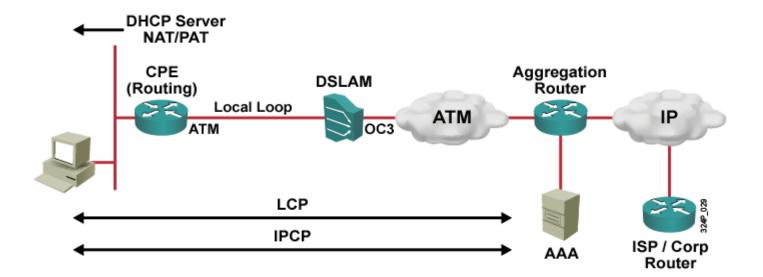
 Difference is entirely in way how to configure egress interface, all other configuration steps are just same

ΡΡΡοΕοΕ

ΡΡΡοΕοΑ

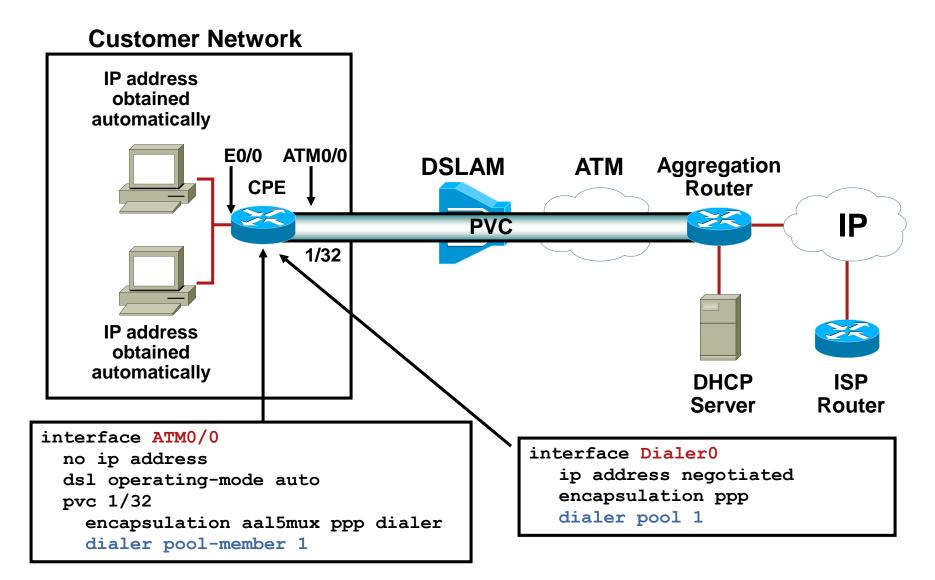
interface Ethernet0/1
no ip address
pppoe enable
pppoe-client dial-pool-number 1


interface ATM0/0
no ip address
dsl operating-mode auto
pvc 1/32
pppoe-client dial-pool-number 1

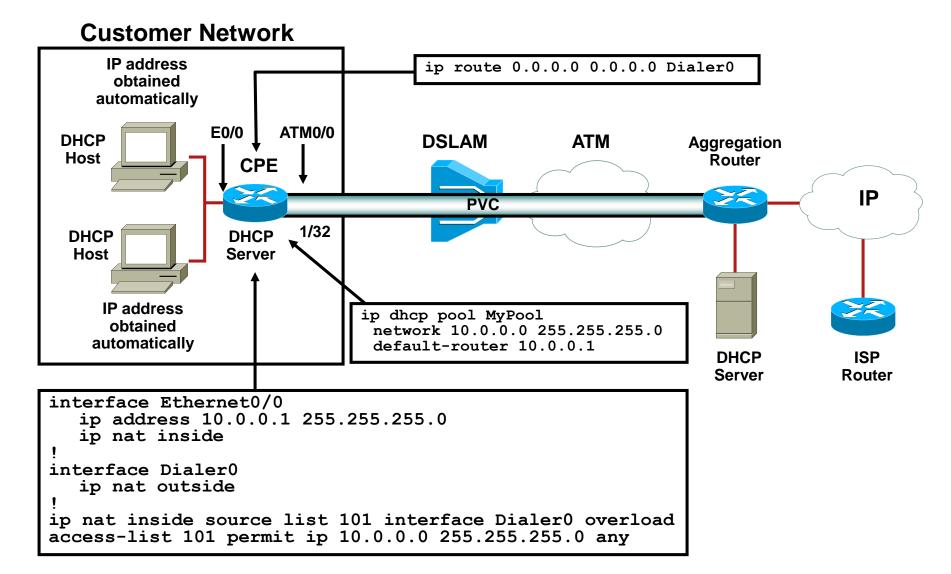

PPPoA

PPP over ATM (PPPoA)

- Simple approach internal network is Ethernet, DSL network is ATM and between those two networks packets are routed
- PPP frames are transferred without PPPoE+Ethernet headers in ATM
- PPPoA session is created between router and BRAS



Creating PPPoA Session



- There's no "helper" encapsulation
- There's no need to alter MTU and MSS
- CPE creates PPP connection carried through ATM VC againt BRAS

Final PPPoA Configuration

```
hostname CPE
ip dhcp pool MyPool
 network 10.0.0.0 255.0.0.0
 default-router 10.0.0.1
interface ATM0/0
 no ip address
 dsl operating-mode auto
 pvc 1/32
  encapsulation aal5mux ppp dialer
  dialer pool-member 1
interface Ethernet0/0
 ip address 10.0.0.1 255.0.0.0
 ip nat inside
interface Dialer0
 ip address negotiated
 encapsulation ppp
 dialer pool 1
 ip nat outside
 ppp chap hostname mylogin
 ppp chap password mysecret
ip nat inside source list 101 interface Dialer0 overload
access-list 101 permit ip 10.0.0.0 0.255.255.255 any
ip route 0.0.0.0 0.0.0.0 Dialer0
```

PPPoEoX vs. PPPoA

ΡΡΡοΕοΧ

- Ethernet or ATM interface is assigned to Dialer with command pppoe-client dialer-poolnumber
- On Dialer MTU is decremented to1492B
- On ingress interface TCP MSS is decremented to 1452B

PPPoA

 Proper encapsulation is configured on ATM interface and this interface is assigned to dialer with command dialer pool-member

```
interface Ethernet0
no ip address
pppoe enable
pppoe-client dial-pool-number 1
interface ATM1
no ip address
pvc 1/32
pppoe-client dial-pool-number 1
!
interface Dialer0
ip mtu 1492
```

```
interface ATM0/0
no ip address
dsl operating-mode auto
pvc 1/32
encapsulation aal5mux ppp dialer
dialer pool-member 1
```

Useful Commands

- show pppoe session
- show pppoe summary
- show controllers dsl / show controllers atm
- debug pppoe events
- debug pppoe packets

Network Address Translation

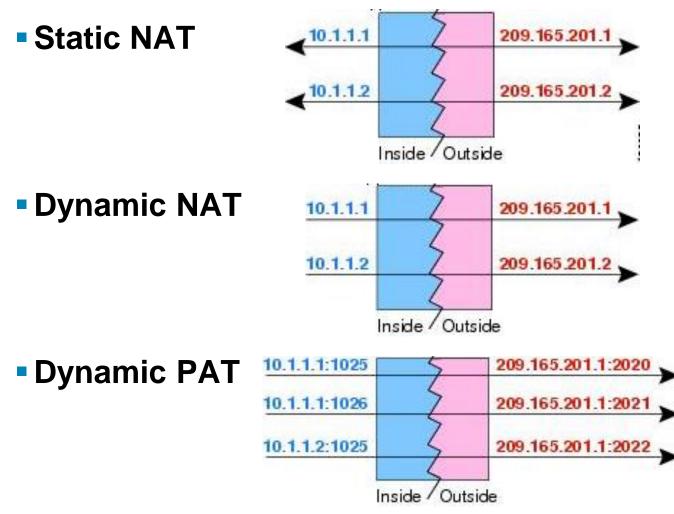
Private Addresses

- There is a limited number of public IPv4 addresses!
 - RFC 1918, RFC 6598

Block size	IP address range	number of addresses	largest CIDR block (subnet mask)
24-bits	10.0.0.0 - 10.255.255.255	16,777,216	10.0.0/8
20-bits	172.16.0.0 - 172.31.255.255	1,048,576	172.16.0.0/12
16-bits	192.168.0.0 - 192.168.255.255	65,536	192.168.0.0/16
22-bits	100.64.0.1 - 100.127.255.254	4,194,302	100.64.0.0/10

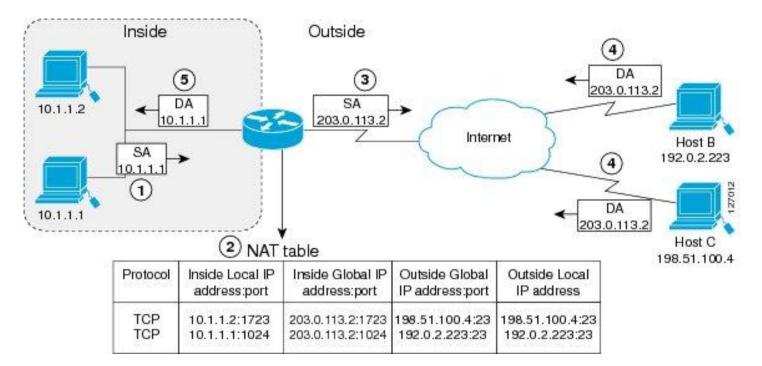
RFC 6598 addresses are used to address users CPEs to avoid collisions between ISP and user's private pool

Private Addresses in IPv6


RFC 4193 Unique Local addresses (ULA)

RFC 4193 Block	Flag	Global ID (random)	Subnet ID	Number of interface addresses in subnet
fc00::/7	L	xx:xxxx:xxxx	УУУУ	18,446,744,073,709,551,616
	1	40 bits	16 bits	64 bits

- ULA Prefix with L flag 0 is not defined, thus, only fd00::/8 can be used
- 40 bits of Global ID MUST be random (hard to achieve in practice)

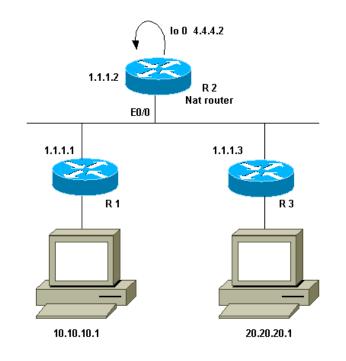

Cisco Variants

Source NAT vs. Destination NAT

Inside/Outside vs. Local/Global

- Inside = behind the NAT
- Outside = in front of the NAT
- Local = <u>Loco</u> identifier
- Global = <u>Good</u> identifier

Configuring NAT Interfaces

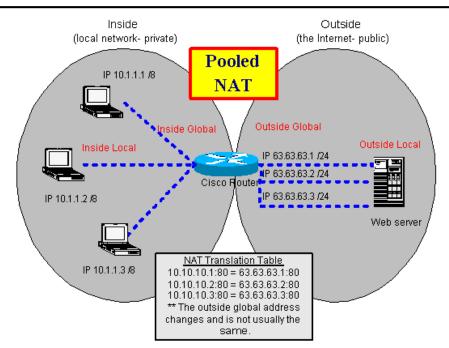

Marking inside / outside interfaces

(config-if) # ip nat {inside|outside}

Agnostic NAT using NVI interface

NAT on-the-stick

(config-if) # ip nat enable



Configuring NAT Addresses

Inside address range matched by pool

(config)# access-list {1-99} permit source source-wildcard

Outside pool of addresses

Configuring NAT

Static NAT

(config) # ip nat inside source local-ip global-ip

Dynamic NAT

(config) # ip nat inside source list acl-ref pool pool-name

- Dynamic PAT
 - Single interface

(config) #
 ip nat inside source list acl-ref interface iface overload

Pool of addresses

(config)#
 ip nat inside source list acl-ref pool pool-name overload

Verifying NAT

```
router-6# show ip nat statistics
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Outside interfaces:
Ethernet0, Serial2.7
Inside interfaces:
Ethernet1
Hits: 5 Misses: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
access-list 7 pool test refcount 0
pool test: netmask 255.255.255.0
start 172.16.11.70 end 172.16.11.71
type generic, total addresses 2, allocated 0 (0%), misses 0
```

Router# show ip nat translations							
Pro	Inside global	Inside local	Outside local	Outside global			
icmp	171.16.68.5:15	10.10.10.1:15	171.16.68.1:15	171.16.68.1:15			
	171.16.68.5	10.10.10.1					

Tunneling

What Is Tunneling?

- Many times it's useful to create "illusion" of the new network above the existing one. Here are some motivations:
 - Existing network doesn't recognize protocol which we would need to transfer across it or service we would like to use
 - We would like to use existing network as transport tool but we want it to be completely invisible from point of view of internal network
 - We need to interconnect multiple sites with potentially private IP address space
 - We don't trust existing network and we want to securely transfer data across it

• Tunneling = technique where packet is reencapsulated into the new packet

 Former packet becomes payload of new packet and therefore its content (L3 header) is not in attention of routers

Protocols Used in Tunneling

Passenger protocol

- We would like to transfer datagrams of this protocol inside tunnel
- E.g. IPX, AppleTalk, IPv4, IPv6

Encapsulating/Tunneling protocol

- Header of this protocol is prepended before passenger protocol
- It's used to identify passenger protocol and secure transmission with authentication, encryption, etc.
- E.g. GRE, IPsec, L2F, PPTP, L2TP

Carrier protocol

- Existing network uses this protocol for transport and inside it encapsulating protocol is carried wrapped around passenger protocol
- E.g. Frame-relay, ATM, Ethernet

Encapsulating Protocols

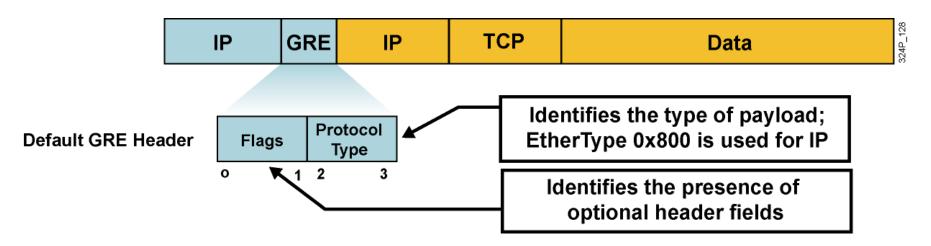
 Tunneling could be achieved with or even without support of encapsulating protocol

Tunneling WITH encapsulating protocol

- Encapsulating protocol wraps around original data and then is inserted into new packet in carrier protocol
- Authentication support, multiple tunnels between same devices, encryption
- More features means potentially more overhead
- E.g. GRE, L2TP, PPTP

Tunneling WITHOUT encapsulating protocol

- Original packet is directly inserted into the new one
- Limited support of advanced tunneling features
- Minimal overhead
- E.g. IP-in-IP, IPv6-in-IPv4


Generic Routing Encapsulation (GRE)

- **GRE** is encapsulating/tunneling protocol on L3
 - Supports multiple passenger protocols
 - Creates virtual point-to-point connection between pair of routers
 - Uses IP as carrier protocol
 - Allows transmission of multicast traffic (NBMA nature)
- GRE was originally invented by Cisco, but nowadays it's open standard specified in <u>RFC 2784</u>

GRE Header ①

- GRE is stateless without any signalization and traffic flow control
- GRE doesn't provide any security (no authentication, no encryption, no message integrity, no trustworthiness)
- Overhead of GRE tunnel is 24B (20B for new IPv4 header and 4B for GRE header)

GRE Header (2)

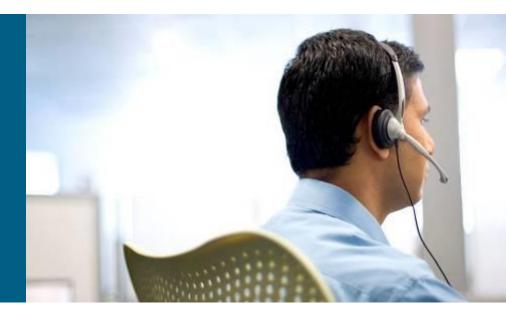
• GRE **Flags** are stored in first 2B of header:

- Checksum Present (bit 0)
- Key Present (bit 2)
- Sequence Number Present (bit 3)
- Version Number (bits 13–15): GRE has version 0, PPTP has version 1
- Protocol Type specify type of passenger protocol, usually it has same value as in field EtherType L2 Ethernet frame

Configuring GRE Tunnel

- GRE tunnels are represented by virtual Tunnel interface on router
- Tunnel interface must have:
 - Own IP address (just like any other interface)
 - IP address of sender and receiver of (carrier protocol) packets
 - Set proper tunneling mode
- Pair of Tunnel endpoint interfaces on opposite routers must met this criteria:
 - Tunnel endpoints own IP addresses must be in same network segment – just like any other two directly interconnected interfaces
 - IP addresses of sender and receiver must correspond on both endpoints – IP address of receiver on one side must be IP address of sender on the opposite site and vice versa
- Tunnel interface bandwidth is by default 9 Kbps
 - Surprisingly it's recommended to change to reflect real situation $\textcircled{\tilde{ {\it o}}}$

GRE Configuration



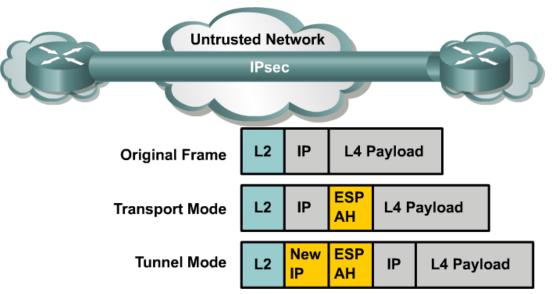

```
hostname Brno
                                         hostname Jesenik
I
interface Serial0/0
                                         interface Serial0/0
 ip address 192.3.4.5 255.255.255.0
                                          ip address 223.1.2.3 255.255.255.0
no shutdown
                                          no shutdown
interface Tunnel0
                                         interface Tunnel7
bandwidth 1000
                                          bandwidth 1000
 tunnel source s0/0
                                          tunnel source s0/0
 tunnel destination 223.1.2.3
                                          tunnel destination 192.3.4.5
 tunnel mode gre ip ! OPTIONAL
                                          tunnel mode gre ip ! OPTIONAL
 ip address 10.0.0.1 255.255.255.0
                                          ip address 10.0.0.2 255.255.255.0
1
router ospf 1
                                         router ospf 1
 network 10.0.0.1 0.0.0.0 area 0
                                          network 10.0.0.2 0.0.0.0 area 0
```

Tunnel Interface Status

- State "up, protocol up" when using Tunnel interface for GRE is shown when following conditions are met:
 - Interface has defined source and destination addreses with commands tunnel source and tunnel destination
 - Actual interface with IP address specified in tunnel source is in state "up, protocol up" – source interface is working
 - Route to address specified in tunnel destination must be present in routing table – destination IP must be reachable according to router's RT
 - Whenever GRE Keepalive feature is enabled then opposite side of tunnel should be able to response to Keepalive packets – transport network should be able to deliver packets between tunnel endpoints

IPsec for Dummies

IP Security


- IPsec is series of IETF standards describing ways how to secure transmission of IP packet
- IPsec provides:
 - Data confidentiality Nobody can read it!
 - Data integrity Nobody alter data as they traversed through network!
 - Data origin authentication We know exactly and certainly who send it!
 - Anti-replay protection
- IPsec uses 3 supporting protocols
 - Internet Key Exchange (IKE) for secure transfer of shared keys and NAT-T support (UDP ports 500 a 4500)
 - Authentication Header (AH) for sender authentication, data integrity and optional anti-replay protection
 - Encapsulating Security Payload (ESP) for data encryption, sender authentication, data integrity and optional anti-replay protection

AH and ESP

AH protects packet payload and fixed IP header fields

- Doesn't provide encryption
- Doesn't like NAT (because NAT rewrites IP headers)
- ESP protects payload with encryption
 - Doesn't secure IP header
 - Authentication is provided optionally
- AH is nowadays used rarely (even ASA doesn't support AH), on the other hand ESP is used very often
- AH and ESP could be used simultaneously

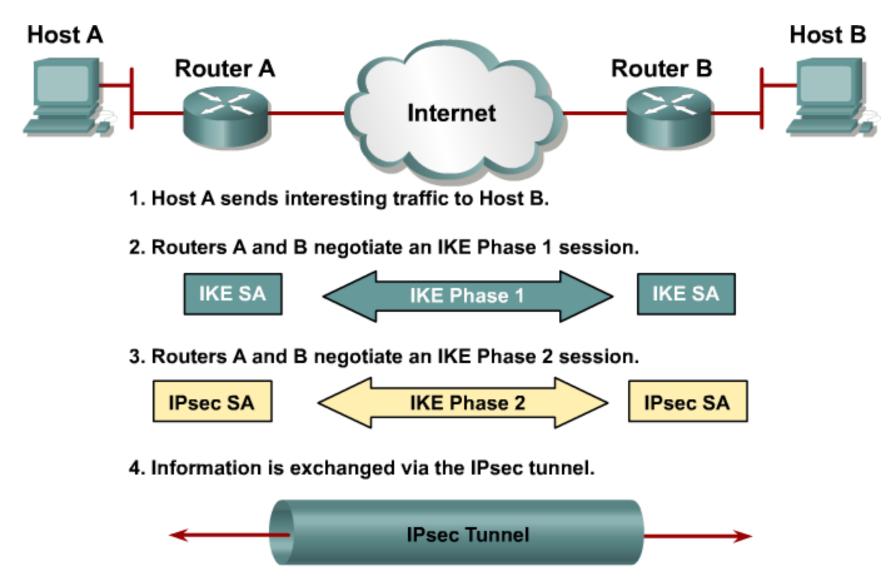
IPsec Modes of Operation (1)


Transport Mode

- Original header is used routing is intact
- Only the payload of the IP packet is usually encrypted and/or authenticated
- Transport mode is used on Cisco router only when router itself is sender of packet

Tunnel Mode

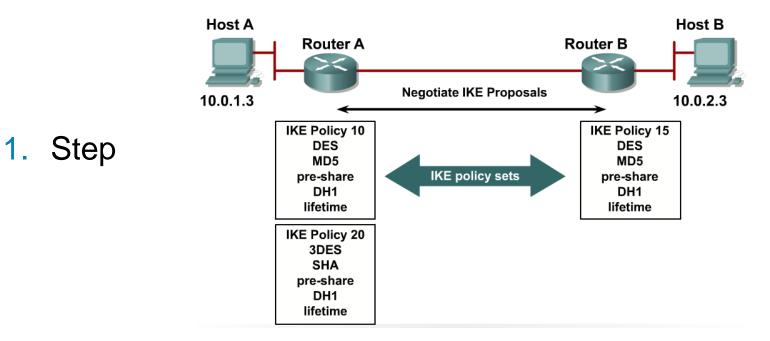
- Entire IP packet is encrypted and/or authenticated
- Adds new IP header

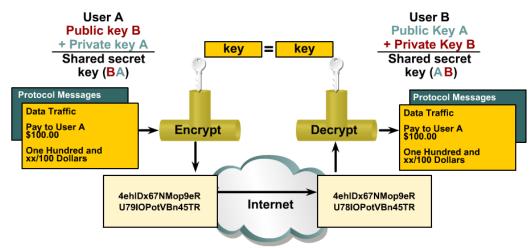

IPsec Modes of Operation (2)

Security Association

- Security Association (SA) is a complete list of negotiated parameters between IPsec peers
- SA contains following operating information
 - How is authentication of peers done?
 - In which operational mode should IPsec work?
 - Which algorithm and key is used for data encryption?
 - Which algorithm is used for data integrity?
 - How and how often should be keys replenished?
- ISAKMP (IKE) is responsible for creation and maintenance SA between peers

IPsec Tunnel Creation




5. The IPsec tunnel is terminated.

IKE Phase 1 ①

- IKE Phase 1 creates secure channel for IPsec peers authentication
- IKE Phase 1 has three steps
 - 1. Negotiating ISAKMP policies
 - 2. Diffie-Hellman key exchange
 - 3. Peers authentication
- 1. Negotiating ISAKMP policies
 - Which encryption algorithm to use?
 - Which hashing algorithm to use?
 - Which Diffie-Hellman group?
 - How to authenticate peer?
- 3. Peers authentication
 - According to way negotiated in Step 1 (pre-shared, RSA nonce, RSA signature)
- Properties of IPsec tunnel itself are not negotiated, this is done in IKE Phase 2

IKE Phase 2

In IKE Phase 2 properties of IPsec tunnel between peers are negotiated

- Which protocol to use AH, ESP, AH+ESP?
- Which encryption algorithm to use?
- Which hashing algorithm to use?
- Which operational mode of IPsec to use?
- What are keys used for encryption and decryption?
- What is a lifetime of this negotiated properties?
- First four properties are called transform set (TS)

Configuring of IPsec

Successful implementation of IPsec consists of:

- Create at least one ISAKMP policy for IKE Phase 1
- Create at least one transform set for IKE Phase 2
- Create crypto map and ACL describing interesting traffic
- Apply crypto map on egress interface

Configuring ISAKMP Policy

crypto isakmp policy 1					
encr 3des					
hash md5					
authentication pre-share					
group 2					
lifetime 3600					
exit					
crypto isakmp key 0 HESLO addr 192.0.2.254					

- Encryption: 3DES
 - Alternatives: DES, AES
- Hash: MD5
 - Alternatives: SHA
- Authentication: pre-shared key
 - Alternatives: RSA based
- DH group: 2 (1024b)
 - Alternatives: 1 (768b), 5 (1536b)
- Lifetime: 3600s
- Pre-shared key for peer with address 192.0.2.254

Configuring Transform Set

- Transform set defines
 - Usage of AH and/or ESP
 - Encryption algorithm and length of key
 - Hashing algorithm
 - Operational mode either transport or tunnel
- Transform sets are identified by their names
- Configuration snippet:

crypto ipsec transform-set AH-ESP-3DES-SHA ah-sha-hmac esp-3des crypto ipsec transform-set ESP-AES-SHA esp-aes 256 esp-sha-hmac

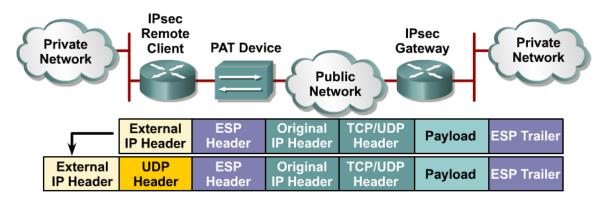
Creation of Crypto Map

- Crypto map bonds together:
 - IPsec peers
 - ACL matching exact traffic to be encrypted between those peers
 - Target transform set to use
 - Way how to exchange keys (either manually or with support of ISAKMP)
 - Lifetime of SA and keys
- Crypto map must minimally consists of...
 - Peer definition
 - ACL reference
 - Transform set reference
- ACL defines which packets should be passed through IPsec tunnel
 - Usually statement in form "from our network to peer's network"
 - Stay away from usage statement with any!

Configuring Crypto Map

Example:

- Block 10: Lifetime is 10 000 KB or 1800 s, two alternative TS, newly generated keys with DH group 5
- Block 20: Minimal configuration with one TS


```
crypto map CM-S0/0 10 ipsec-isakmp ! Prvý blok, číslo 10
set peer 1.2.3.4
set security-association lifetime kilobytes 10000
set security-association lifetime seconds 1800
set transform-set ESP-AES-SHA AH-ESP-3DES-SHA
set pfs group5
match address 100
crypto map CM-S0/0 20 ipsec-isakmp ! Druhý blok, číslo 20
set peer 5.6.7.8
set transform-set ESP-AES-SHA
match address 110
interface Serial 0/0
crypto map CM-S0/0
```

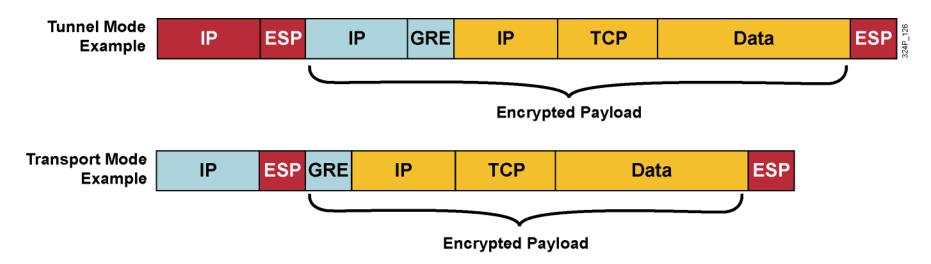
Final IPsec Configuration

```
crypto isakmp policy 1
encr 3des
hash md5
authentication pre-share
group 2
lifetime 3600
crypto isakmp key 0 prd31 address 192.0.2.254
crypto ipsec transform-set ESP-AES-SHA esp-aes 256 esp-sha-hmac
crypto map CM-S0/0 10 ipsec-isakmp
set peer 192.0.2.254
set transform-set ESP-AES-SHA
match address 100
crypto map CM-S0/0 local-address Lo0 ! Loopback addresses peering
access-list 100 permit ip 10.0.0.0 0.255.255.255 192.168.10.0 0.0.0.255
int s0/0
crypto map CM-S0/0
```

Final Notes

- ESP has huge issue with NAT hence NAT-T (NAT Traversal) was specified in <u>RFC 3715</u>
- NAT-T must be allowed through any firewall
 - UDP/500
 - UDP/4500

 For mobile clients is recommended new technology SSLVPN instead of robust and technologically complicated IPsec


Secure GRE Tunnels

IPsec + GRE?

- On the one hand IPsec is great for secure transfer of data, BUT...
 - Supports only IP
 - Older IOSes don't support IPsec + multicast
 - Until recent only way how to configure IPsec was with cryptomap on egress interface hence it wasn't possible to...
 - ...create Tunnel interface representing IPsec tunnel
 - ...activate routing protocol above this tunnel
- On the other hand GRE is great tunneling protocol, unfortunately its security features are terrible
- Solution = secure GRE tunnels with IPsec

IPsec + GRE!

GRE could use IPsec in either tunnel or transport mode

- Transport mode is efficient saves 20 B on additional IP header per every packet
- Encapsulation order:
 - Passenger protocol \rightarrow GRE \rightarrow IPsec \rightarrow IP

Configuration Ways ①

- Two existing ways
 - Crypto maps (in every IOS)
 - **IPsec profiles** applied directly on Tunnel interface (only in newer IOSes)
- Crypto map way for IPsec + GRE is similar to IPsec crypto map only...
 - ...however it's necessary to be aware of fact that egress interface transmits GRE packets instead of "plain IP packets"
 - Command set peer in crypto map must match with IP address in tunnel destination command on Tunnel interface
 - ACL in crypto map must match GRE packet type with source and destination address referred in tunnel source resp. tunnel destination commands
 - 12.2(13)T and older IOSes must have crypto map applied both on Tunnel interface and also egress interface (<u>Document ID 14125</u>)
 - All other configuration steps are similar

Crypto Map Configuration Example

1 22		
	GRE Tunnel	
	IP Transport Network	Ŕ

```
hostname Jesenik
```

```
I
crypto map KRYPTUJ 1 ipsec-isakmp
match address 150
set transform-set TS
set peer 223.1.2.3
interface Serial0/0
ip address 192.3.4.5 255.255.255.0
crypto map KRYPTUJ
interface Tunnel0
tunnel source s0/0
tunnel destination 223.1.2.3
 ip address 10.0.0.1 255.255.255.0
crypto map KRYPTUJ ! Unnecessary on 12.2(13)T and newer
access-list 150 permit gre host 192.3.4.5 host 223.1.2.3
```

Configuration Ways (2)

- Newer IOSese support more convenient IPsec profile way with use of:
 - IPsec profiles
 - Tunnel interface command tunnel protection
- IPsec profile is simplified version of crypto map
 - without match address for ACL
 - without set peer
- On Tunnel interface exists command tunnel protection that bonds tunnel with IPsec profile
- With this configuration way there's no need to create crypto map and ACL
 - All other configuration steps are still necessary defining ISAKMP policies, pre-shared password, transform-sets
 - Be aware GRE Keepalives feature isn't supported when using IPsec profiles (<u>Document ID 64565</u>)

IPsec Profiles Configuration Example


```
hostname Jesenik
crypto ipsec profile KRYPTUJ
 set transform-set TS
interface Serial0/0
 ip address 192.3.4.5 255.255.255.0
interface Tunnel0
 tunnel source s0/0
 tunnel destination 223.1.2.3
 tunnel protection ipsec profile KRYPTUJ
 ip address 10.0.0.1 255.255.255.0
```

Useful Commands

- show crypto ipsec
- show crypto session

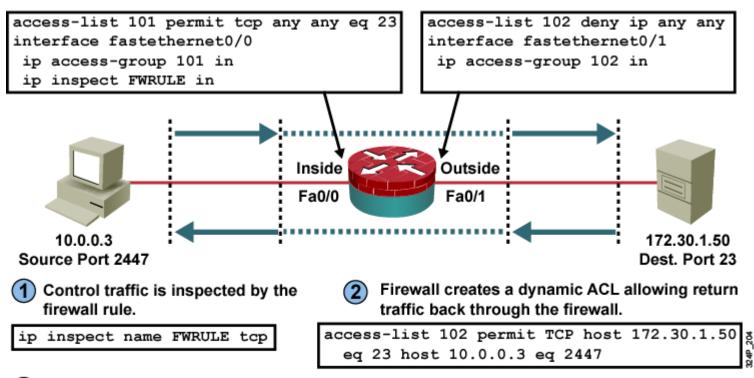
clear crypto session

debug crypto isakmp

debug crypto ipsec

Context-Based Access Control

Cisco IOS ACLs Revisited


- Firewall can be implemented using ACLs
- ACLs provide traffic filtering by these criteria:
 - Source and destination IP addresses
 - Source and destination ports
- Using ACLs for firewall filtering can lead to several shortcomings:
 - Ports opened permanently to allow traffic, creating a security vulnerability.
 - The ACLs do not work with applications that negotiate ports dynamically.

Cisco IOS Firewall addresses these shortcomings of ACLs.

IOS Firewall

- Stateful firewall: Context-Based Access Control (CBAC) or IP Inspect
- Example of usage:
 - Create set of protocols to analyze with IP Inspect
 - Apply the set to the appropriate interface and traffic direction
 - Direction from trusted to untrusted network (new connections go from trusted networks)
 - Apply extended ACL deny ip any any to inbound direction on egress interface
- IP Inspect maintains session table to check "returning" traffic.
 - IF match is found THEN traffic is bypassed through ACL
- All packets inspected by CBAC are processed switch huge impact on router's performance

IP Inspect Example

- Firewall continues to inspect control traffic and dynamically creates and removes ACLs as required by the application. It also monitors and protects against application-specific attacks.
- Firewall detects when an application terminates or times out and removes all dynamic ACLs for that session.

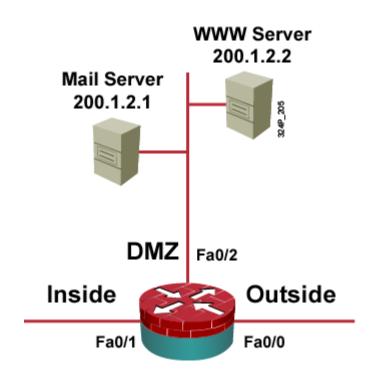
The ip inspect name Parameters

Parameter	Description		
inspection-name	Names the set of inspection rules (protocols). The set can consist of several protocols.		
protocol	The protocol to inspect.		
alert {on off}	(Optional) For each inspected protocol, the generation of alert messages can be set to on or off. If no option is selected, alerts are generated based on the setting of the ip inspect alert-off command.		
audit-trail {on off}	(Optional) To turn on CBAC audit trail messages, which will be displayed on the console after each CBAC session closes. Example: %FW-6-SESS_AUDIT_TRAIL: tcp session initiator (192.168.1.13:33192) sent 22 bytes responder (192.168.129.11:25) sent 208 bytes		
timeout seconds	(Optional) Specify the number of seconds for a different idle timeout to override the global TCP or UDP idle timeouts for the specified protocol. This timeout overrides the global TCP and UDP timeouts but does not override the global Domain Name Service (DNS) timeout. To specify the DNS idle timeout use ip inspect dns- timeout command in global configuration mode.		

Configuration

- Inspection rules are applied on the interface where traffic initiates
 - ACL can also permits only wanted traffic
 - On all other interfaces, apply the ACL in the inward direction that denies all traffic

Router(config-if) # ip inspect inspection-name {in | out}


Parameter	Description	
inspection-name	Names the set of inspection rules	
in	Applies the inspection rules to inbound traffic	
out	Applies the inspection rules to outbound traffic	

Example: CBAC for Two Interfaces Scenario

```
ip inspect name OUTBOUND tcp
ip inspect name OUTBOUND udp
ip inspect name OUTBOUND icmp
interface FastEthernet0/0
 ip access-group OUTSIDEACL in
interface FastEthernet0/1
 ip inspect OUTBOUND in
                                               Inside
                                                                 Outside
 ip access-group INSIDEACL in
                                                   Fa0/1
                                                                 Fa0/0
ip access-list extended OUTSIDEACL
permit icmp any any packet-too-big
deny ip any any log
                                           Permit outbound TCP, UDP, and ICMP flows
ip access-list extended INSIDEACL
permit tcp any any
permit udp any any
permit icmp any any
```

Example: CBAC for Three Interfaces Scenario

```
interface FastEthernet0/0
ip inspect OUTSIDE in
ip access-group OUTSIDEACL in
interface FastEthernet0/1
ip inspect INSIDE in
ip access-group INSIDEACL in
interface FastEthernet0/2
ip access-group DMZACL in
ip inspect name INSIDE tcp
ip inspect name OUTSIDE tcp
ip access-list extended OUTSIDEACL
permit tcp any host 200.1.2.1 eq 25
permit tcp any host 200.1.2.2 eg 80
permit icmp any any packet-too-big
deny ip any any log
ip access-list extended INSIDEACL
permit tcp any any eq 80
permit icmp any any packet-too-big
deny ip any any log
ip access-list extended DMZACL
permit icmp any any packet-too-big
deny ip any any log
```


Verifying IP Inspect Firewall

show	ip	inspect	name inspection-name
show	ip	inspect	config
show	ip	inspect	interfaces
show	ip	inspect	session [detail]
show	ip	inspect	statistics
show	ip	inspect	all

Displays inspections, interface configurations, sessions, and statistics

```
Router# show ip inspect session
Established Sessions
Session 6155930C (10.0.0.3:35009)=>(172.30.0.50:34233) tcp SIS_OPEN
Session 6156F0CC (10.0.0.3:35011)=>(172.30.0.50:34234) tcp SIS_OPEN
Session 6156AF74 (10.0.0.3:35010)=>(172.30.0.50:5002) tcp SIS_OPEN
```

IP Inspect Reports

Router(config)#

ip inspect audit-trail

Summary messages about monitored protocols

Router (config) #

no ip inspect alert-off

 Realtime alerts about suspicious activity in monitored protocols, disabled by default

Router(config)# logging on
Router(config)# logging host 10.0.0.3
Router(config)# ip inspect audit-trail
Router(config)# no ip inspect alert-off

Troubleshooting IP Inspect

Cisco IOS Firewall Design Guide

http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5708/ps5710/ ps1018/product_implementation_design_guide09186a00800fd670.h tml

```
debug ip inspect function-trace
debug ip inspect object-creation
debug ip inspect object-deletion
debug ip inspect events
debug ip inspect timers
debug ip inspect detail
debug ip inspect protocol
Since IOS 12.4(20)T the command debug ip inspect is replaced by
debug policy-firewall
```


Slides adapted by <u>Vladimír Veselý</u> and Matěj Grégr partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

Last update: 2016-03-28