·IIIII CISCO

Voice over IP

SWITCH Module 7

Agenda

- Intro
- Quality of Service
- VoIP and QoS Configuration for Catalyst
- Power over Ethernet

VoIP Intro

Voice over IP

- VoIP = delivery of voice communications over IP networks
- VoIP became IP telephony telephony services (voice, fax, sms, chat, …) are transported via the IP network, rather than the public switched telephone network (PSTN)
- IP Communications (Unified Communications) combine telephone service, faxes, voicemail, e-mail, chat, web conferences etc.

VoIP Network Components

IP Phones and Videoconferencing Station

Provides IP voice and video to the desktop

Gateway

- Provides translation between VoIP and non-VoIP networks
- It also provides physical access for local analog and digital voice devices, such as telephones, fax machines, key sets, and PBXs

Multipoint Control Unit (MCU)

 Provides real-time connectivity for participants in multiple locations to attend the same videoconference or meeting

Call Agent

 Provides call control for IP phones, CAC, bandwidth control and management, and translation for IP addresses or tel. numbers

Application server

 Provides services such as voice mail, unified messaging, and Cisco Unified Communications Manager Attendant Console

VoIP Protocols

VoIP generally uses two types of protocols

Signaling protocols

- Call Control
- Device control

Media protocols

RTP

Signaling Protocols

Identify the state of connection between telephones

Call Control

- H.323 protocol family (H.225, H.245)
- Session Initiation Protocol (SIP)
- Skinny Call Control Protocol (Skinny)

Device Control

- H.248/Megaco (Media Gateway Control)
- SIGTRAN

Media Protocols

Transfer voice, video, DTMF tones etc.

Real-time Transport Protocol (RTP)

- RFC 3550
- Most used protocol for delivering audio
- Built on the UDP
- Timestamps (for synchronization)
- Sequence numbers (for packet loss and reordering detection)
- Payload format (codec)
- RTCP QoS feedback and synchronization between the media streams
- Voice is digitized and compressed using codecs
 - Different bandwidth requirements less bandwidth usually means worse voice quality

Voice Codecs

- By default 20msec of voice data are packetized
- Sampling > Quantization > Compression > Packetization

8,000 Samples per Second

Chunks of 30 ms (240 Samples), 33.33 per Second

Codec

Codec	G.711	G.726 r32	G.726 r24	G.726 r16	G.728	G.729	G.723 r63	G.723 r53
Bandwidth	64	32	24	16	16	8	6.3	5.3
	kbps	kbps	kbps	kbps	kbps	kbps	kbps	kbps

Basic Phone Call

QoS in Networks

IP Networks

- "IP over everything" is slowly changing to "Everything over IP" or so called Internet of Everything (IoE)
- Nowadays network trend is to provide several services (data, voice, video etc.) using packet IP infrastructure
 - Increasing load
 - Traffic characteristic is changing:
 - Services transfer different type of data different requirements
 - Best effort delivery is no longer sufficient
- It is important to determine which applications will be deployed
 - Peer-to-peer TelePresence
 - Video-on-demand Training
 - IP surveillance

Traffic Characteristic

VoIP

- Smooth
- Low-bandwidth
- Requires bandwidth guaranty
 - 8kbps to 64kbps depends on codec
 - + network overhead (12kbps 80kbps)
- Packets drop can be eliminated
 - Depends on codec 0,1% 5%
 - Acceptable 1%
- Delay sensitive
 - < 150 ms</pre>
 - > 200 ms = quality degradation
- Jitter
 - Anything bellow < 30ms is good
 - but 10ms are considered to be a standard treshold

Data

- Bursty
- Maximum network utilization (TCP window)
- Does not require bandwidth guaranty
- Drop sensitive
- Delay is usually not a problem

Smooth Benign Drop Sensitive Delay Sensitive UDP Priority Smooth or Bursty Benign or Greedy Drop Insensitive Delay Insensitive TCP Retransmits

Voice and Video Traffic Profiles

Different Requirements

Requirement	Data	Voice	Video		
Bandwidth	High	Low	High		
Delay	If less than a few msec, not applicable	< 150 msec	< 150 msec for real-time video		
Jitter	Not applicable	Low	Low (< 10 msec)		
Packet Loss	< 5%	< 1%	< 0.5%		
Availability	High	High	High		
Inline Power	No	Optional	Optional for select devices		
Security	High	Medium	Low or Medium		
Provisioning	Medium Effort	Significant Effort	Medium Effort		

Internet Today

- Provides best-effort data delivery
 - Flat system, without packet categorization
 - Voice packets are routed using "best" route
 - Different characteristic for every route throughput, latency
 - Dynamic conditions, asymetric routing

As demands exceeds capacity, service degrades gracefully

Packet losses

- Congestion, errors in the transmission
- Packet delay
 - = processing + queueing delay + serialization + propagation
- Jitter
- Throughput
- Availibility

Difficult to predict in IP networks!

Quality of Service

 The above – mentioned problems are solved in telephone networks

- e.g. Time division multiplexing time slots
- IF there is not enough capacity for another call THEN call is refused

Packet switching networks can fulfill the requirements by

- Separating data and voice traffic
- Classifying and prioritizing voice traffic
- Providing sufficient link capacity
- ...all of previous is called Quality of Service (QoS)

How to Achieve QoS

Requirements for new mechanisms

- There is a need for mechanisms to distinguish different data flows
 - ...and process them a special/required way
 - No flat behavior anymore!
- There is a need for advanced resource management mechanisms
 - ...which allows manage net resources (bandwidth, delay, loss, jitter)
 - ...with focus on different data flows requirements

QoS Service Models

Best-effort service

- The standard form of connectivity without guarantees
- This type of service, in reference to Catalyst switches, uses first-in, first-out (FIFO) queues

Integrated service (IntServ)

- a.k.a. hard QoS is a reservation of services
- The IntServ model implies that traffic flows are reserved explicitly by all intermediate systems and resources

Differentiated service (DiffServ)

- a.k.a. soft QoS, is class-based, in which some classes of traffic receive preferential handling over other traffic classes
- Differentiated services use statistical preferences, not a hard guarantee such as integrated services
- DiffServ categorizes traffic and then sorts it into queues of various efficiencies.

QoS Mechanism

Transmit Queue

queues. Congestion avoidance manages traffic in the queues.

Classification and marking

- Allows define classification criteria
- How to find traffic which requires special processing?

Scheduling and policing enforcement

 Allows create special processing mechanisms for classified flows and control traffic compliance

Policy Control

• Who may requires a special handling for their data?

Admission Control

Does network has enough resources to provide required resources?

QoS Operation

Classification and Marking (DSCP, IP precedence, NBAR, and so on)

Classification

Classification = process of content determination

Typically on access or distribution layer

Layer 2 parameters

 MAC address, 802.1p CoS, Multiprotocol Label Switching (MPLS) TC, ATM Cell Loss Priority (CLP) bit, Frame Relay Discard Eligible (DE) bit, input interface

Layer 3 parameters

 IP precedence, Differentiated Services Code Point (DSCP), IP address, input interface

Layer 4 parameters

TCP/UDP ports, transport protocol

Layer 7 parameters

Application signatures

Marking

Marking is a result of classification

- L2 802.1p (part of 802.1q)
- L3 IP Precedence (Type of Service field)
- DSCP (Differentiated Services Code Point)

Frames with a same mark is processed similarly

- Input queue scheduling
- Policing
- Output queue scheduling

Class of Service Field

Ethernet Frame

Pream.	SFD	DA	SA	TPID 2 Bytes		TPIDTCIPTBytes2 BytesPT			Data	FCS
			P	RI	CFI	v			802.1Q/p H	leader
Three Bits (802.1p	Used fo User Pri	or CoS ority)	3 Bits	5	1 Bit	12 Bits	C	05	Applicatio	n

- IEEE 802.1p user priority field is also called Class of Service (CoS)
- IEEE 802.1p supports up to eight CoSs
- IEEE 802.1p is preserved through the LAN, not end to end

CoS	Application
7	Reserved
6	Reserved
5	Voice Bearer
4	Videoconferencing
3	Call Signaling
2	High-Priority Data
1	Medium-Priority Data
0	Best-Effort Data

325P_090

ToS vs. DSCP

- IPv4: three most significant bits of ToS byte are called IP Precedence (IPP)
- DiffServ: six most significant bits of ToS byte are called DiffServ Code Point (DSCP)—remaining two bits used for flow control
- DSCP is backward-compatible with IP precedence

Type of Service Field

Precedence

- 111 Network Control
- 110 Internetwork Control
- 101 CRITIC/ECP
- 100 Flash Override
- 011 Flash
- 010 Immediate
- 001 Priority
- 000 Routine (BE)

- D Delay
- T Throughput
- R Reliability
- C Cost
 - 0000 All normal (Default)
 - 1000 Minimize delay
 - 0100 Maximize throughput
 - 0010 Maximize reliability
 - 0001 Minimize monetary cost

DSCP: Per-Hop Behavior

Per-Hop Behavior (PHB)

- Influenced by DSCP
- the packet scheduling, queuing, policing, or shaping behavior of a node on any given packet with DSCP set
- PHB Groups
 - Default
 - Class-selector
 - Expedited Forwarding (EF)
 - Value ***dd0
 - Ensures minimum departure rate
 - Guarantess and policies bandwidth
 - Assured Forwarding (AF)
 - Guarantees bandwidth
 - Value 101110

DSCP: Standard PHB Groups

- *E.g.* AF13 is more eligible for drops than AF11
- *E.g.* AF42 is more prioritized than AF22

PHB		DSCP	IP	Precedence
Default (Best Effort)	000000			0
Scavenger (Less-than-Best-Effort)	8 001000			1
Assured Low Drop Med Drop High Drop Forwarding Pref. Pref. Pref.				
Class 1 AF11 AF12 AF13	001 <mark>01</mark> 0	001 <mark>10</mark> 0	00 <mark>111</mark> 0	1
Class 2 AF21 AF22 AF23	010 <mark>01</mark> 0	010 <mark>10</mark> 0	01 <mark>011</mark> 0	2
Class 3 AF31 AF32 AF33	011 <mark>01</mark> 0	²⁸ 011100	³⁰ 011110	3
Class 4 AF41 AF42 AF43	³⁴ 100 <mark>01</mark> 0	36 100 <mark>10</mark> 0	³⁸ 100110	4
Expedited EF	46 101110			325F_008

Maps to

Classification and Marking Best-Practice

Application		L3 Classification	า	L2
Application	IPP	PHB	DSCP	CoS
Routing	6	CS6	48	6
Voice	5	EF	46	5
Video Conferencing	4	AF41	34	4
Streaming Video	4	CS4	32	4
Mission-Critical Data	3	AF31*	26	3
Call Signaling	3	CS3*	24	3
Transactional Data	2	AF21	18	2
Network Management	2	CS2	16	2
Bulk Data	1	AF11	10	1
Best Effort	0	0	0	0
Scavenger	1	CS1	8	1

Traffic Policing and Shaping

Admission and policy control is done via Shaping/Policing

- Shaping is done on customer's side
- Policing is done on provider's side

Congestion Management

FIFO Queuing

Places all egress frames into same queue

Weighted Round Robin (WRR) Queuing

Multiple egress queues with different weigths

Priority Queuing (PQ)

- More prioritized queue is served first
- Usually 1 PQ that is taking advantage above others

Custom Queuing (CQ)

Each traffic type has reserved queue with guaranteed bandwidth

Weighted Fair Queuing (WFQ)

Flow-base queues creating bit-wise fairness

Queues Implementation

Congestion Avoidance

Weighted Random Early Detection (WRED)

Multiple RED profiles (according to CoS or DSCP)

VoIP and QoS Configuration

Trust Boundaries

- Boundaries where marking performed by previous active network devices is being trusted
- Best practices suggest classifying and marking traffic as close to the traffic source as possible!

Separation of Data and Voice Traffic (1)

- Switch cannot distinguish voice and data packets
 - Voice packets cannot be prioritized
- Solution?
 - 802.1Q tagging
 - Data packets are transmitted without a tag
 - Voice packet tagged by phone

Separation of Data and Voice Traffic (2)

- IP phone has two Ethernet ports IP phone transmits data
 - Connection to the network
 - Connection to the PC

- Voice packets
- Data packets generated by PC

Voice VLAN (Auxiliary VLAN)

- Cisco switch allows to configure voice vlan a.k.a. auxiliary VLAN
- Data traffic DOES NOT use 802.1Q tag
- Voice traffic is tagged according to the configuration
 - Voice Vlan ID = VVID
- Cisco IP phone discover voice VLAN by CDP
 - CDP should be enabled on access ports
 - IP phone tags Voice packets with VVID

Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 100
Switch(config-if)# switchport voice vlan 200

Class of Service (CoS)

Voice packets tagged with 802.1Q tag allows:

- Separation of voice and data traffic
- Allows to set CoS bits in 802.1Q header

Switch(config-if)#
 switchport voice vlan {vlan-id | dot1p | untagged | none}

Keyword	In Figure	Native VLAN (untagged)	Voice VLAN	Voice QoS (CoS)
vlan-id	1st	PCdata	VLAN <i>vlan-id</i>	802.1p
dot1p	2nd	PCdata	VLAN 0	802.1p
untagged	3rd	PCdata/voice		802.1p
none (default)	4th	PCdata/voice		

QoS Configuration

Enabling QoS (disabled by default on some platforms)

Switch(config)# mls qos

IF the mls qos is enabled THEN switch starts to rewrite CoS field according the configuration

Class of Service

Packets are sorted to different output queues according the CoS field

- Length or weight of queue can be set in configuration
- Recommended value for voice traffic = CoS 5
- Cisco IP phones automatically mark voice packet with CoS 5 by default
- Switch DOES NOT believe received CoS priorities by default
 - Trust for CoS field can be set on a interface:

Switch(config-if) # mls qos trust cos

• IFF Cisco phone is connected on the interface THEN trust the CoS field :

Switch(config-if) # mls qos trust cos Switch(config-if) # mls qos trust device cisco-phone

CoS for Marked Data Frames

Attacker can mark own data packets with high priority

- IP phone could be configured to check data packets
 - IF the priority is set THEN phone rewrites the priority to predefined value
- CDP is used to inform the phone about the priority

Switch(config-if) # switchport priority extend cos 2

IF the PC can be trusted THEN trust boundaries can be extended to the PC:

Switch(config-if) # switchport priority extend trust

CoS for Unmarked Data Frames

The CoS can be set to predefined value for data frames without CoS set

Switch(config-if) # mls qos cos 1

Port Configuration for Hardware IP Phone

Switch(config) # mls qos						
Switch(config) # interface Fa0/1						
Switch(config-if)# switchport mode access						
Switch(config-if)# switchport access vlan 100						
Switch(config-if)# <pre>switchport voice vlan 200</pre>						
Switch(config-if) # switchport priority extend cos 2						
Switch(config-if)# mls qos cos 1						
Switch(config-if)# mls qos trust cos						
Switch(config-if) # mls qos trust device cisco-phone						

Port Configuration for Software IP Phone

- PC cannot use Voice VLAN
- Cisco IP Communicator does not sent marked frames
- Cisco IP Communicator is also using and benefiting from CDP
- Trust must be set to DSCP field in IP packet

```
Switch(config)# mls qos
Switch(config)# interface Fa0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 100
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos trust device cisco-phone
```

Verify the QoS

show mls qos interface

```
Switch# show mls qos interface fastethernet 0/1
FastEthernet0/1
trust state: trust cos
trust mode: trust cos
trust enabled flag: ena
COS override: dis
default COS: 0
DSCP Mutation Map: Default DSCP Mutation Map
Trust device: none
```

Connection Between Switches

Trust for CoS MUST be enabled between switches

Switch(config-if) # switchport mode trunk Switch(config-if) # mls qos trust cos

Connection Between Router and Switch

CoS can be used only on trunk ports

- Ethernet frame DOES NOT contain priority bits
- CoS is valid only in one VLAN (broadcast domain)
 - Router encapsulates packet into a new frame, hence, CoS field is not copied
- Trust is set to DSCP bits in IP header

Switch(config)# mls qos
Switch(config)# interface Fa0/2
Switch(config-if)# switchport mode trunk
Switch(config-if)# mls qos trust dscp

CoS/DSCP Trust Notes (1)

- CoS is valid only between neighbors
- DSCP is valid between end stations (end-to-end range)
- mls qos trust creates trust boundary
 - Interface between trusted and untrusted network
 - Untrusted network can use CoS/DSCP marks
 - Trusted network use CoS/DSCP
 - Edge switch for the trust boundary rewrites CoS/DSCP fields

 Once again trust boundary should be as close to the source as possible

- Usually on access switch
- switchport priority extend extends the boundary to an IP phone

CoS/DSCP Trust Notes (2)

- Catalyst switches CAN NOT trust CoS and DSCP values simultaneously
 - IF a switch trust to CoS THEN it DOES NOT trust DSCP and vice versa
- IF trust is set to CoS THEN
 - DSCP bits are rewritten according to "cos-dscp map" table
- IF trust is set to DSCP THEN
 - CoS bits are rewritten according to "dscp-cos map" table

Default Mappings

Default CoS ↔ DSCP Mapping										
CoS	CoS 0 1 2 3 4 5 6 7									
DSCP	0	8	16	24	32	40	48	56		

Default IP Precedence ↔ DSCP Mapping									
IP Precedence	0	1	2	3	4	5	6	7	
DSCP	0	8	16	24	32	40	48	56	

Displays the maps that are used to generate rewrites:

switch# show mls qos maps [cos-dscp | dscp-cos]

switch# <mark>s</mark>	101	N I	nls	qos	s ma	aps	dso	-qc	cos					
Dscp-cos dscp:	ma O	ар 8	: 10	16	18	24	26	32	34	40	46	48	56	
•••• •F														
cos:	0	1	1	2	2	3	7	4	4	5	5	7	7	

- Setting the QoS parameters is non-trivial
- Macro auto qos generates QoS configuration automatically
- IFF HW phone is connected to switch THEN trust CoS:

Switch(config-if) # auto qos voip cisco-phone

IFF SW phone is connected THEN trust DSCP

Switch(config-if)# auto qos voip cisco-softphone

Trusted PC

Switch(config-if) # auto qos voip trust

Uplink from switch port to the router

Switch(config-if)# auto qos voip trust

Verifying Cisco Auto-QoS

- Generated configuration can be changed by administrator
- show auto qos command displays the original configuration
 - However, it does not display any additional changes by network administrator [®]

```
switch# show auto qos
Initial configuration applied by AutoQoS:
wrr-queue bandwidth 20 1 80 0
no wrr-queue cos-map
wrr-queue cos 1 0 1 2 4
wrr-queue cos 3 3 6 7
wrr-queue cos 4 5
mls qos map cos-dscp 0 8 16 26 32 46 48 56
!
interface FastEthernet0/3
mls qos trust device cisco-phone
mls qos trust cos
```

Power Over Ethernet (PoE)

Power over Ethernet

- High availability
- Cisco Inline Power (ILP)
 - Cisco proprietary, before 802.3af
- IEEE 802.3af 15.4W per port
- IEEE 802.3at 25.5W per port
- Power
 - 48V DC
 - Pins 1-3, 2-6 (ILP, IEEE)
 - Pins 4,5 a 7,8 (IEEE)

Device Detection

- Switch is constantly checking presence of a PoE device
- Cisco Inline Power (CIP)
 - Catalyst switch is sending 340 kHz tone on Tx pair
 - Cisco phone connects Rx and Tx pair by low-pass filter
 - Switch "hear" own tone if a device supports PoE

IEEE 802.3af, 802.3at

- Power is connected to Tx and Rx pair
- Measures impedance

IEEE802.3af PoE Classes

 IEEE 802.3af allows to assign only necessary power for PoE device

Power Class	Maximum Power Offered at 48V DC	Notes
0	15.4W	Default class
1	4.0W	Optional class
2	7.0W	Optional class
3	15.4W	Optional class
4	—	Reserved for future use

Switch# debug ilpower controller Switch# debug cdp packets

00:58:46: ILP uses AC Disconnect(Fa1/0/47): state= ILP_DETECTING_S, event= PHY_CSCO_DETECTED_EV 00:58:46: %ILPOWER-7-DETECT: Interface Fa1/0/47: Power Device detected: Cisco PD 00:58:46: Ilpower PD device 1 class 2 from interface (Fa1/0/47) 00:58:46: ilpower new power from pd discovery Fa1/0/47, power_status ok 00:58:46: Ilpower interface (Fa1/0/47) power status change, allocated power 15400 00:58:46: ILP Power apply to (Fa1/0/47) Okay 00:58:46: ILP Power apply to (Fa1/0/47) Okay 00:58:46: %ILPOWER-5-POWER_GRANTED: Interface Fa1/0/47: Power granted 00:58:46: ILP uses AC Disconnect(Fa1/0/47): state= ILP_CSCO_PD_DETECTED_S, event= IEEE_PWR_GOOD_EV 00:58:48: ILP State_Machine (Fa1/0/47): State= ILP_PWR_GOOD_USE_IEEE_DISC_S, Event= PHY_LINK_UP_EV

PoE Configuration

Enabled by default

Switch(config)# interface	IFACE					
Switch(config-if)# <pre>power</pre>	inline	{auto	[max	milli-watts]		
		stati	ic [ma	x milli-watts]	I	never}

Verify

Switch# show power inline [type mod/num]

Cisco CallManager Express

QoS on Routers

Slides adapted by Matěj Grégr and tuned by <u>Vladimír Veselý</u> partially from official course materials but most of credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

The last update: 2013-08-01