·IIIII CISCO

High Availability

SWITCH Module 9

Agenda

- StackWise
- Virtual System Switching
- Redundant Processor Supervisor
- Server Load Balancing
- BiDirectional Forwarding

Resiliency for High Availability

- High availability is implemented with the following components
 - Network-level resiliency
 - Redundant links
 - Redundant devices
 - Power redundancy
 - Fast convergence
 - System-level resiliency
 - Integrated hardware resiliency
 - Redundant power supply
 - Stackable switches

Management and monitoring

Detection of failure

StackWise

What Is StackWise?

- Cisco StackWise technology provides a method for collectively utilizing the capabilities of a stack of switches.
- Configuration and routing information is shared by every switch in the stack, creating a single switching unit.
- Switches can be added to and deleted from a working stack without affecting performance.

The stack is managed as a single unit by a master switch, which is elected from one of the stack member switches.

StackWise Details

- Each stack of switches has a single IP address and is managed as a single object.
- This allows each switch in the stack to share the same network topology, MAC address, and routing information.
- Catalyst 3750-E, 3750-X, and 3850 series switches support StackWise and StackWise Plus.
- StackWise Plus is an evolution of StackWise. StackWise Plus supports local switching, so locally destined packets need not traverse the stack ring.
- Catalyst 3850 series supports StackWise-480 with improved 480-Gbps stacking. Catalyst 2960-S series supports FlexStack, aStackWise-based feature tailored for Layer 2 switches. FlexStack is limited to four stacked switches.

StackWise Benefits

Verifying StackWise

Switch1# show switch								
Switch/Stack Mac Address: 0013.6075.7280								
Switch#	Role	Mac Address	Priority H/W	Version	Current State			
*1	Master	0013.6075.7280	1	0	Ready			
2	Member	0013.60e1.1800	1	0	Ready			

Switch1# show switch stack-ports				
Switch #	Port 1	Port 2		
1	Ok	Ok		
2	Ok	Ok		

Virtual Switching System

What Is VSS?

- Virtual Switching System (VSS) is a network system virtualization technology that combines a pair of Catalyst 4500 or 6500 series switches into one virtual switch, increasing the operational efficiency, boosting nonstop communications, and scaling the system bandwidth capacity.
- The VSS simplifies network configuration and operation by reducing the number of Layer 3 routing neighbors and by providing a loop-free Layer 2 topology.

What Is VSS?

- The VSL is made of up to eight 10 Gigabit Ethernet connections bundled into an EtherChannel.
- VSL carries the control plane communication between the two VSS members, in addition to regular data traffic.
- Once the VSS is formed, only the control plane of one of the members is active. The data plane and switch fabric of both members are active.
- Both chassis are kept in sync with the interchassis SSO mechanism, along with NSF to provide nonstop communication even in the event of failure of one
 Virtual Switching Link

VSS Benefits

- VSS increases operational efficiency by reducing switch management overhead and simplifying the network.
- It provides a single point of management, IP address, and routing instance.
- Neighbors see the VSS as a single Layer 2 switching or Layer 3 routing node, thus reducing the control protocol traffic.
- VSS provides a single VLAN gateway IP address, removing the need for the first-hop redundancy protocol (HSRP, VRRP, GLBP),
- Multichannel EtherChannel (MEC) allows you to bundle links to two physical switches in VSS, creating a loop-free redundant topology without the need for STP.
- Interchassis stateful failover results in no disruption to applications that rely on network state information.
- VSS eliminates Layer 2 / Layer 3 protocol reconvergence if a virtual switch member fails, resulting in deterministic subsecond virtual switch recovery.

VSS Benefits

Verifying VSS

To verify the status of VSS configuration, use the following commands:

- show switch virtual
- show switch virtual link
- show switch virtual role
- show switch virtual link port-channel

```
Switch1# show switch virtual
Switch mode : Virtual Switch
Virtual switch domain number : 1
Local switch number : 1
Local switch operational role : Virtual Switch Active
Peer switch number : 2
Peer switch operational role : Virtual Switch Standby
```

Varifying VCI

Switch1# show switch virtual link
VSL Status : UP
VLS Uptime : 7 weeks, 4 days, 31 minutes
VSL SCP Ping : Pass
VSL ICC Ping : Pass
VSL Control Link : Tel/5/5
VSL Encryption : Configured Mode - Off, Operational Mode - Off

```
Switch1# show switch virtual link port-channel
Flags: D - down P - bundled in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use N - not in use, no aggregation
      f - failed to allocate aggregator
      M - not in use, no aggregation due to minimum links not met
      m - not in use, port not aggregated due to minimum links not met
      u - unsuitable for bundling
      d - default port
      w - waiting to be aggregated
Group Port-channel Protocol Ports
        ----+
     Po2(RU) - Te1/5/4(P) Te1/5/5(P)
2
                 - Te2/5/4(P) Te2/5/5(P)
3
     Po3 (RU)
```

Redundant Switch Supervisors

Redundancy Features

- Redundancy of Supervise Engines
 - Route Processor Redundancy
 - Route Processor Redundancy+
 - Stateful SwitchOver
 - Non-Stop Forwarding with SSO
- Available ONLY on Catalyst 4500/6500

Supervisor Redundancy Modes

Redundancy Mode	Behavior When Active Module Fails	Failover Time	
RPR	The standby module reloads every other module, initializes all supervisor functions.	> 2 minutes	
RPR+	The standby module finishes initializing without reloading other modules.	> 30 seconds	
SSO	The standby module is already initialized.	> 1 second	

- Redundant supervisor modules can be configured in several modes.
- Redundancy mode limits the standby supervisor's state of readiness.
- SSO allows for NSF.

Route Processor Redundancy (RPR)

- With RPR, any of the following events triggers a switchover from the active to the standby Supervisor Engine
 - Route Processor (RP) or Switch Processor (SP) crash on the active Supervisor Engine
 - A manual switchover from the CLI
 - Removal of the active Supervisor Engine
 - Clock synchronization failure between Supervisor Engines

RPR+ enhances Supervisor redundancy compared to RPR

- Reduced switchover time (in the range of 30 seconds to 60 seconds)
- No reloading of installed modules (Because both the startup configuration and the running configuration stay continually synchronized)
- *RPR is not preferred any longer!*

Configuring and Verifying RPR

To use RPR and change its mode RPR+ issue following:

Router(config)# redundancy Router(config-red)# mode rpr-plus

Type following command to verify RPR status:

```
Switch# show redundancy states
    my state = 13 -ACTIVE
    peer state = 1 -DISABLED
        Mode = Simplex
        Unit = Primary
        Unit ID = 1
Redundancy Mode (Operational) = Route Processor Redundancy Plus
Redundancy Mode (Configured) = Route Processor Redundancy Plus
Split Mode = Disabled
Manual Swact = Disabled Reason: Simplex mode
Communications = Down Reason: Simplex mode
```

Stateful Switchover (SSO)

- Provides minimal Layer 2 traffic disruption during Supervisor switchover
- Redundant Supervisor starts up in fully initialized state and synchronizes with startup configuration and running configuration of active Supervisor
- Standby Supervisor in SSO mode keeps in sync with active Supervisor for all changes in hardware and software states for features supported via SSO
- Preferred solution replacing RPR!

Features Supported by SSO

- On Cat6500 switchover is between 1 to 3 seconds, on Cat4500 it is subsecond
- Protocols that are maintained synchronized by SSO
 - 802.3x (Flow Control)
 - 802.3ad (LACP) and PAgP
 - 802.1X (Authentication) and Port security
 - 802.3af (Inline power)
 - VTP
 - Dynamic ARP Inspection/DHCP snooping/IP source guard
 - IGMP snooping (versions 1 and 2)
 - DTP (802.1Q and ISL)
 - MST/PVST+/Rapid-PVST
 - PortFast/UplinkFast/BackboneFast /BPDU Guard and filtering
 - Voice VLAN
 - Unicast MAC filtering
 - ACL (VLAN ACLs, Port ACLs, Router ACLs)
 - QOS (DBL)
 - Multicast storm control/broadcast storm control
- Observe that mostly L2 remains synchronized, what about L3?

Configuring and Verifying SSO

To use SSO issue following:

Router(config) # redundancy
Router(config-red) # mode sso

• IF mode is changed THEN standby is reset

Same command as for RPR could be used to verify SSO:

```
Switch# show redundancy states
    my state = 13 -ACTIVE
    peer state = 8 -STANDBY HOT
        Mode = Duplex
        Unit = Primary
        Unit ID = 2
Redundancy Mode (Operational) = Stateful Switchover
Redundancy Mode (Configured) = Stateful Switchover
        Split Mode = Disabled
        Manual Swact = Enabled
        Communications = Up
```

Non-Stop Forwarding (NSF) with SSO

- Minimizes time that L3 network is by continuing to forward IP packets using CEF entries built from the old active SE
 - Zero or near zero packet loss
 - Supports BGP, EIGRP, OSPF, and IS-IS
 - Prevents route flapping
- How is it done?
 - Adjacencies must not be reset when switchover is complete; otherwise, protocol state is not maintained
 - FIB must remain unchanged during switchover
 - Current routes are marked as stale during restart and routes are refreshed after Cisco NSF convergence is complete
 - Switchover must be completed before dead or hold timer expires; otherwise, peers will reset the adjacency and reroute the traffic
 - Cisco NSF-capable routers are also aware about Cisco NSF-capable neigbours
- The most preferred solution replacing SSO!

Configuring NSF

 NSF is an additional configuration option when SSO is enabled

• To configure NSF for OSPF, EIGRP, and IS-IS, use the:

Router (config-router) # nsf router-level

• To configure BGP for NSF support, use the:

Router(config-router)#
 bgp graceful-restart router-level

Verifying NSF

Switch# show ip bgp neighbors 192.168.200.1 BGP neighbor is 192.168.200.1, remote AS 200, external link BGP version 4, remote router ID 192.168.200.1 BGP state = Established, up for 00:01:23 Last read 00:00:17, hold time is 180, keepalive interval is 60 seconds Neighbor capabilities: Route refresh: advertised and received (new) Address family IPv4 Unicast:advertised and received Address family IPv4 Multicast:advertised and received Graceful Restart Capability: advertised and received Remote Restart timer is 120 seconds Switch# show ip ospf Routing Process "ospf 200" with ID 192.168.20.1 and Domain ID 0.0.0.1 Supports only single TOS(TOS0) routes Supports opaque LSA SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs Number of external LSA 0. Checksum Sum 0x0 Number of opaque AS LSA 0. Checksum Sum 0x0 Number of DCbitless external and opaque AS LSA 0 Number of DoNotAge external and opaque AS LSA 0 Number of areas in this router is 1. 1 normal 0 stub 0 nssa External flood list length 0 Non-Stop Forwarding enabled, last NSF restart 00:02:36 ago (took 34 secs) Area BACKBONE(0) Number of interfaces in this area is 1 (0 loopback)

Routing Protocols and NSF

 NSF enables continued forwarding of packets along known routes while routing protocol information is being restored during switchover

IOS Server Load Balancing

Server Load Balancing

- Available only on high-end platform i.e. Cat6500
- SLB provides load balancing for a server farm
 - According to L4 L7 information
 - SW
 - HW
 - Cisco Application Control Engine (ACE) module

Internet

IOS SI F

- Advantages
 - Reducing server load
 - Increased security real IP address is not visible
 - Reducing downtime (switch detects down servers)

Web Servers

3

Virtual Server and Server Farm

- Cisco IOS SLB enables users to represent a group of network servers (a server farm in a data center) as a single server instance so called virtual server
 - Balance the traffic and limit it to individual servers
 - Any request to virtual server is served by real servers

Cisco IOS SLB modes

Dispatched mode

- Each of the real servers is configured with the virtual server address as a loopback address or secondary IP address
- Packets are redirected to the real servers at the MAC layer
 - Packet targeted to the virtual IP address is encapsulated into the frame with MAC address corresponding to the real server IP address
- Servers must be in same network (Layer2 adjacent)

Directed mode

- Each of the real servers has own real IP address
- Server does not known virtual IP address of a server farm
- Packets are translated using NAT

Configuring the Server Farm with Real Servers

1) Define the server farm:

Switch(config) # ip slb serverfarm SERVERFARM-NAME

2) Associate the real server with the server farm:

Switch(config-slb-sfarm) # real A.B.C.D

3) Enable the real server in a server farm:

Switch(config-slb-real)# inservice

Example: Server Farm

- Two server farms in a data center, PUBLIC and RESTRICTED
- PUBLIC: three real servers: 10.1.1.1, 10.1.1.2 a 10.1.1.3
- RESTRICTED: two real servers: 10.1.1.20 a 10.1.1.21


```
Switch(config)# ip slb serverfarm PUBLIC
Switch(config-slb-sfarm)# nat server ! Directed Mode
Switch(config-slb-sfarm)# real 10.1.1.1
Switch(config-slb-real)# inservice
Switch(config-slb-real)# real 10.1.1.2
Switch(config-slb-real)# real 10.1.1.3
Switch(config-slb-real)# inservice
!
Switch(config-slb-real)# inservice
!
Switch(config)# ip slb serverfarm RESTRICTED
Switch(config-slb-sfarm)# nat server ! Directed Mode
Switch(config-slb-sfarm)# real 10.1.1.20
Switch(config-slb-real)# inservice
Switch(config-slb-real)# inservice
```

SLB Verification

- Displaying the status of the server farms
 - Associated servers
 - State of real servers
 - Load balancing mode

Switch# show ip slb real						
real	farm name	weight	state	cons		
10.1.1.1	PUBLIC	8	OPERATIONAL	0		
10.1.1.2	PUBLIC	8	OPERATIONAL	0		
10.1.1.3	PUBLIC	8	OPERATIONAL	0		
10.1.1.20	RESTRICTED	8	OPERATIONAL	0		
10.1.1.21	RESTRICTED	8	OPERATIONAL	0		
Switch# show ip slb serverfarm						
server farm	predictor	nat	reals bind i	ld		
PUBLIC	ROUNDROBIN	none	3 0			
RESTRICTED	ROUNDROBIN	none	2 0			

Configuring Virtual Servers

1) Define the virtual server:

Switch(config)# ip slb vserver vserver-name

2) Configure the IP address of the virtual server:

```
Switch(config-slb-vserver)# virtual ip-address [network-mask]
{tcp | udp} [port-number | wsp | wsp-wtp | wsp-wtls | wsp-wtp-wtls]
[service service-name]
```

3) Associate the primary and secondary server farm to the virtual server:

Switch(config-slb-vserver)# serverfarm primary-servfarm-name
[backup backup-serverfarm-name [sticky]]

4) Enable the virtual server:

Switch(config-slb-vserver)# inservice

5) Specify the clients allowed to access the virtual server:

Switch(config-slb-vserver)# client ip-address network-mask

Example: Virtual Servers

Switch(config)# ip slb vserver PUBLIC_HTTP Switch(config-slb-vserver)# virtual 10.1.1.100 tcp www Switch(config-slb-vserver)# serverfarm PUBLIC Switch(config-slb-vserver)# inservice Switch(config)# ip slb vserver RESTRICTED_HTTP Switch(config-slb-vserver)# virtual 10.1.1.200 tcp www Switch(config-slb-vserver)# client 10.4.4.0 255.255.255.0 Switch(config-slb-vserver)# serverfarm RESTRICTED Switch(config-slb-vserver)# inservice

Virtual Server Verification

Switch# show ip slb vs slb vserver prot	erver virtual	state	cons
PUBLIC_HTTP TCP RESTRICTED_HTTP TCP	10.1.1.100:80 10.1.1.200:80	OPERATIONAL 0 OPERATIONAL 0	
! Check the connection Switch # show ip slb co vserver prot	s nnections c client	real	state nat
RESTRICTED_HTTP TCP	10.4.4.	0:80 10.1.1.20	CLOSING non

Troubleshooting

Display detailed info Information for an SLB Client

show ip slb connections client

Display the statistics

show ip slb stats

```
Switch# show ip slb connections client 10.4.4.0 detail
VSTEST_UDP, client = 10.4.4.0:80
state = CLOSING, real = 10.1.1.20, nat = none
v_ip = 10.1.1.200:80, TCP, service = NONE
client_syns = 0, sticky = FALSE, flows attached = 0
Switch# show ip slb stats
Pkts via normal switching: 0
Pkts via special switching: 6
Connections Created: 1
Connections Destroyed: 1
Connections Reassigned: 0
Zombie Count: 0
Connections Reused: 0
```

Bidirectional Forward Detection

Bidirectional Forwarding Detection

• <u>RFC 5880</u>

- Bidirectional Forwarding Detection (BFD) provides a lowoverhead, short-duration method of detecting failures in the forwarding path between two adjacent routers
- Once a BFD session has been established and timer negations are complete, BFD peers send BFD control packets that act in the same manner as an IGP hello protocol to detect liveliness
- BFDv0 and BFDv1 do exist, both supported on Cisco boxes
- Prerequisites
 - CEF and IP routing enabled on all BFD neighbors
 - Each routing protocol MUST be configured to benefit from BFD
- <u>"Bidirectional Forwarding Detection", Cisco IOS Release 12.2SR</u>

Features

- BFD detects a failure, but the IGP/BGP/FHRP must take action to bypass a failed peer
- BFD can provide failure detection in less than one second
 - Reducing the IGP/BGP/FHRP timers can result in minimum detection timer of one to two seconds
- BFD can be used as a generic and consistent failure detection mechanism
- BFD can be less CPU-intensive
 - Some parts of BFD can be distributed to the data plane
 - Reduced IGP/BGP/FHRP timers exist wholly at the control plane

Configuration

• On interface issue following command:

Router(config-if)# bfd interval send-timer
 min rx receive-timer multiplier interval-multiplier

- Interval: period between two consecutive BFD control messages
- min_rx: minimum interval between packets accepted from BFD peers
- multiplier: specifies the minimum number of consecutive packets that can be missed before a BFD session is declared down and neighbor dead (default is 3)

Supported Protocols

(conf-router) # bfd all-interfaces

IGP EIGRP (conf-router) # bfd interface OSPF (conf-if) # ip ospf bfd [disable] IS-IS (conf-if) # isis bfd [disable] EGP BGP (conf-router) # neighbor ip-address fall-over bfd FHRP (conf-if) # standby bfd HSRP VRRP (conf-if) # vrrp bfd

PIM

show ip bfd neighbors [detail]

R1# show bfd neighbor							
OurAddr	NeighAddr	LD/RD	RH/RS	Holddowr	(mult)	State	Int
10.1.3.1	10.1.3.3	1/2	Up	0	(3)	Up	Fa0/1

Example

```
R1# show ip ospf neighbor
NeighborID Pri State
                         Dead Time Address Interface
2.2.2.2
           1 FULL/DR 00:00:37 10.1.2.2 FastEthernet0/0
3.3.3.3
           1 FULL/BDR 00:00:37 10.1.3.3 FastEthernet0/1
R1(config) # int fa 0/0
R1(config-if) # sh
19:52:13.115: %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to
administratively down
R2#
19:52:42.643: %OSPF-5-ADJCHG: Process 1, Nbr 1.1.1.1 on FastEthernet0/0 from
FULL to DOWN, Neighbor Down: Dead timer expired
...
R1(config) #int fa 0/1
R1 (config-if) #shut
20:04:10.204: %OSPF-5-ADJCHG: Process 1, Nbr on FastEthernet0/1 from FULL to
DOWN, Neighbor Down: Interface down or detached
20:04:12.202: %LINK-5-CHANGED: Interface FastEthernet0/1, changed state to
administratively down
R3#
20:04:10.511: %OSPF-5-ADJCHG: Process 1, Nbr 1.1.1.1 on FastEthernet0/1 from
FULL to DOWN, Neighbor Down: BFD node down
```


Slides adapted by Matěj Grégr and tuned by <u>Vladimír Veselý</u> partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

The last update: 2016-11-02