

Basics of Switched Networks

SWITCH Module 1

Agenda

- Cisco Documentation
- Network Design
- Ethernet
 - A brief introduction
 - L2 devices
- Switch Port Analyzer
- Neighbor Discovery Protocols
 - CDP
 - LLDP

Absolute Mandatory Commands Minimum

To alleviate and ease your work with Cisco boxes in labs:

```
(conf)# line console 0
(conf-line) # logging synchronous
(conf)# line vty 0 15
(conf-line)# logging synchronous
(conf-line) # no login
(conf-line) # privilege exec level 15
(conf)# no ip domain-lookup
(conf)# ip host NAME IP
(conf)# terminal monitor
```

Course Recommendation

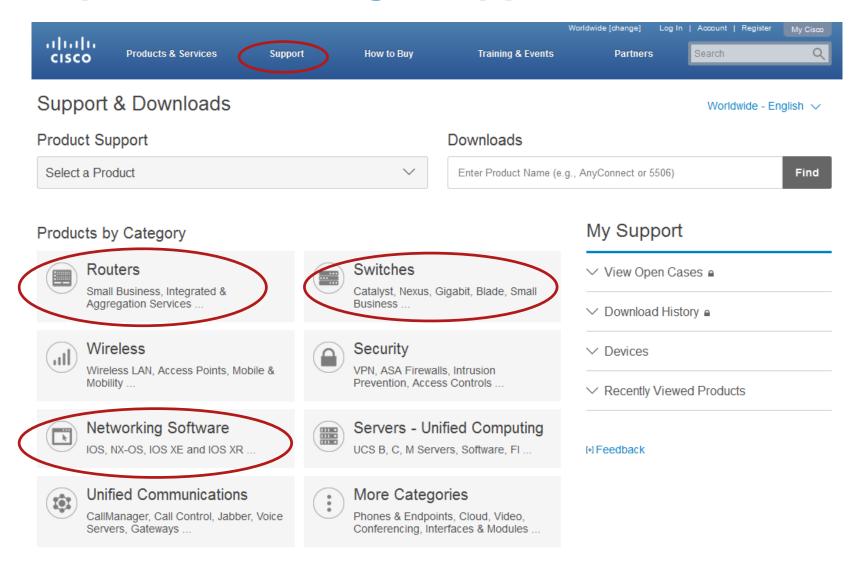
```
DLS1(config) # line vty 0 15
DLS1(config-line) # no login
DLS1(config-line) # privilege level 15
```

DLS1# terminal monitor

```
DLS1(config) # ip host als2 10.1.1.104
DLS1# als2
Trying als2 (10.1.1.104)... Open
ALS2#
ALS2# conf t
! Ctrl+Shift+6 and then x which simulates Ctrl^x
DLS1# show sessions
Conn Host
                         Address
                                             Byte Idle Conn
Name
                         10.1.1.102
                                              671 0 DLS2
   1 DLS2
   2 ALS1
                         10.1.1.103
                                                0 0 ALS1
* 3 ALS2
                         10.1.1.104
                                                0
                                                      0 ALS2
DLS1# 3
[Resuming connection 3 to als2 ... ]
ALS2#
```

Cisco Web Documentation

Cisco Web Documentation 1


- No web curriculums at all!!!
- cisco.com is your best friend
- Orientation on web pages are crucial for all IT networkers
 - ...and they are trying to sabotage it all the time ©
 - Huge knowledgebase

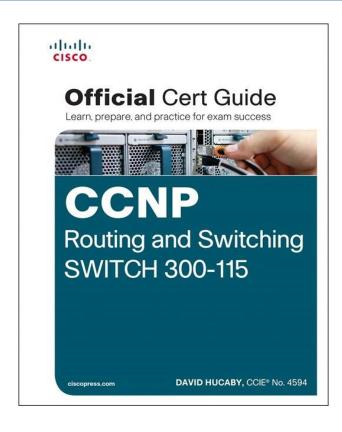
Cisco Web Documentation 2

- Products documentation available
 - by HW platforms
 - by IOS versions
- Experience learn us that IOS commands...
 - for routers are best to find directly in relevant IOS documentation
 - for switches are best to find directly in relevant switch product documentation

Hence it is usually good to know exact IOS and HW version

http://cisco.com/go/support

IOS Documentation


- Most important/interesting are following parts:
 - Configuration Guides consists of thorough description of technologies or protocols and ways how to configure them
 - Command References consists of commands descriptions, syntax and semantics
 - Master Index is alphabet index of commands with references to Command Reference
 - Error and System Messages consists of lists of IOS messages and theirs explanations
- Alternatively it's possible to use <u>Command Lookup Tool</u> to find Command Reference to appropriate command
 - CCO account needed!

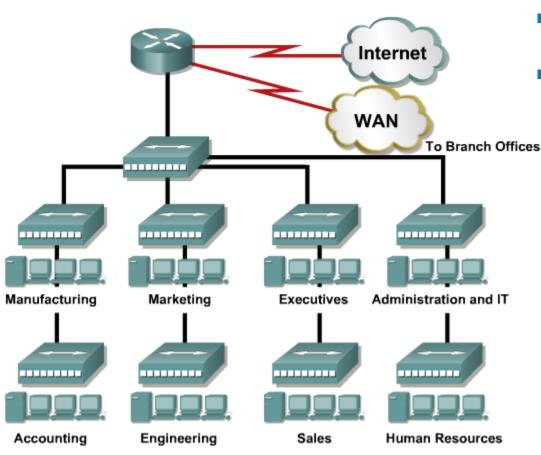
Supporting Documentation

- Case-studies, principle descriptions, configuration examples, technologies reviews
- Many of them have Document ID NUMBER
- How to search for them
 - "Configuring …"
 - "Understanding …"
 - "Troubleshooting …"
 - "How to ..."
 - Support → Cisco IOS and NX-OS Software → Technology
- Cross-referencing between documents hence it's necessary to make bookmarks

Self-study Literature

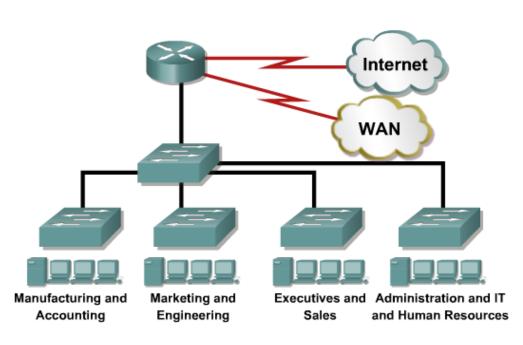
- CCNP R&S: SWITCH 300-115 official certification guide
- CCNP R&S: SWITCH 300-115 Foundation Learning Guide

Network Design: Models and Frameworks

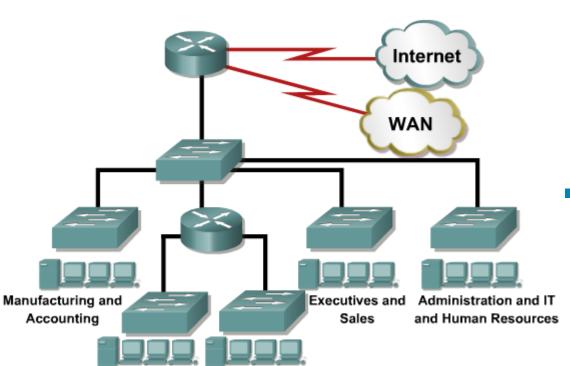

Multilayer Switching?

- Multilayer Switching is term referring to datagram switching on different layers of ISO/OSI model:
 - Layer 1 switching: Signal transmission and amplification
 - Layer 2 switching: Frame transmission (according to L2 header)
 - Layer 3 switching: Packet transmission (according to L3 header)
 - Layer 4 switching: Segment transmission (according to L4 header)
 - Layer 7 switching: Aplication data transmission (according to content)
- What is difference between L3 switching and routing?
 - Today it is usually the same process:
 - Routing is usually done by SW CPU processed
 - Switching is accelerated by HW ASIC processed

Multilayer switches


- Switches with datagram switching support on multiple layers at the same time
- TCAM for fast lookup of RIB

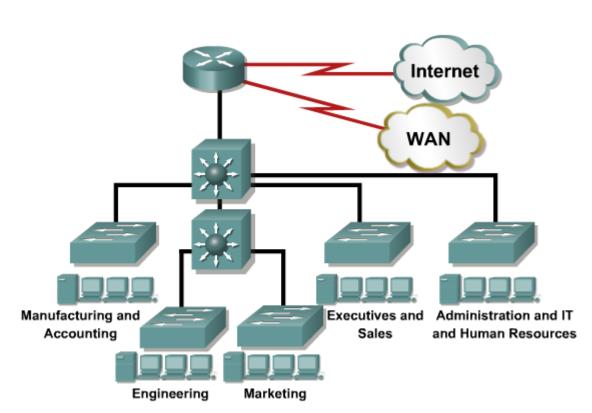
Network without Hierarchy (1)


- Notice HUBs
- Disadvantages:
 - Large collision domains
 - Large broadcast domains
 - No working groups separations
 - Nearly none security
 - Very hard to troubleshoot

Network without Hierarchy 2

- What if we replace hubs with switches – what is corrected and what is still missing?
 - Bandwidth is not shared anymore
 - Large broadcast domains stays
 - Working groups are still not separated
 - No central point for sharing network resources

Introducing Hierarchy to Network



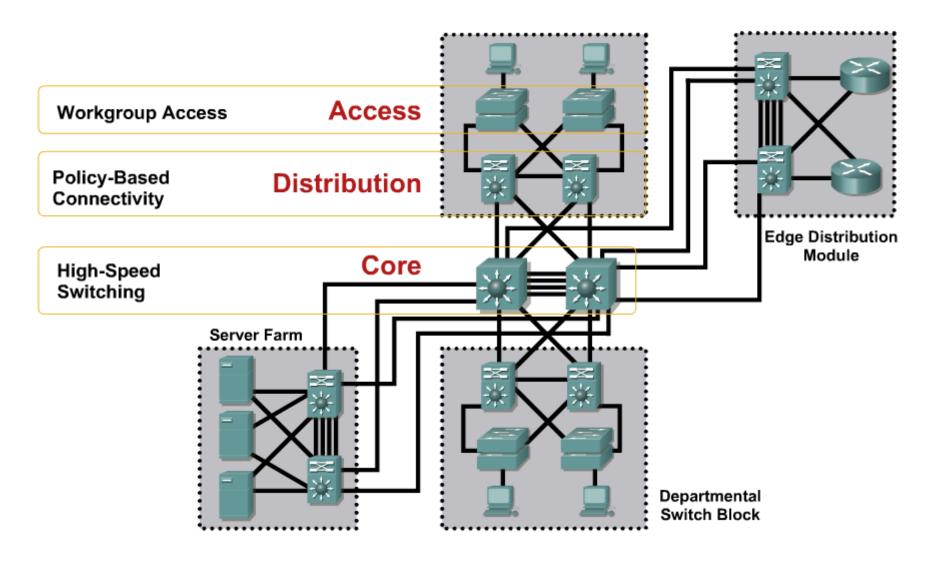
Marketing

Engineering

- With help of router
 - Smaller broadcast domains
 - More control over transferred traffic
- Unfortunately routers are quite expensive
 - Price for port is high
 - Number of ports on usual router is limited

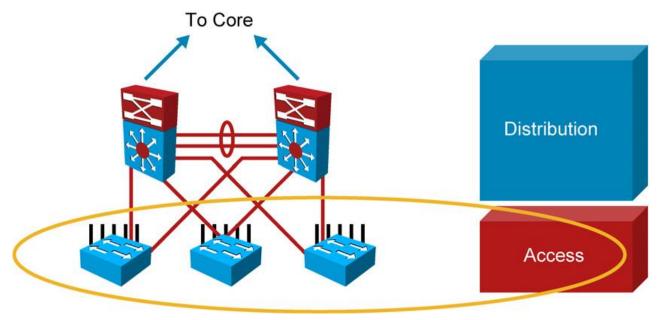
Introducing Multilayer Switching

- Multilayer switches replace routers as integrated devices
- Combine features of
 - Layer 2 switching
 - Layer 3 routing
 - Layer 4 balancing
- Low latency
- High switching throughput

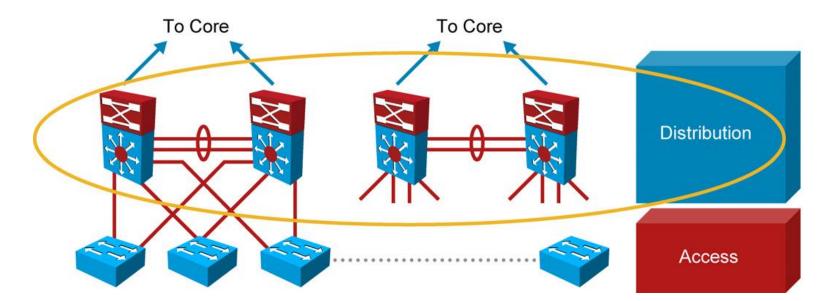

Features of Good Design

- Ad-hoc approach and design leads you to hell and further!!!
- Hierarchically designed network:
 - Has well-known borders of collision, broadcast and error domains
 - Has positive impact on operation
 - Scalable assignment of addresses together with their summarization
 - Transparent network flows
 - Divides L2 and L3 functionality

3Layered Network Design 1


- Bigger network means more attached devices
- It's favorable to divide them according to theirs network function thereby organize them into layers
 - End-to-end connectivity
 - Policy-based routing
 - Fast backbone switching
- System of those three layers (access, distribution, core) is old, traditional but still working

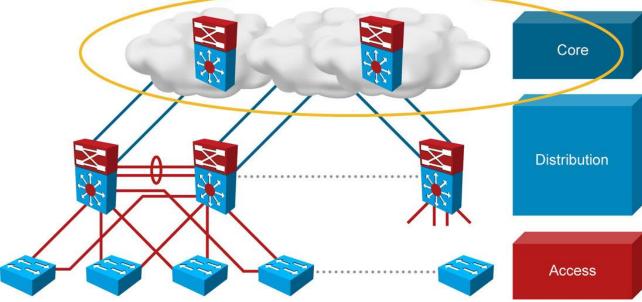
3Layered Network Design 2


Access Layer

- Provides access and aggregation for users in a feature-rich environment
- Provides high availability through software attributes and redundancy
- Supports convergence for voice, wireless, and data
- Provides security services to help control network access
- Offers QoS services including traffic classification and queuing
- Supports IP multicast traffic for efficient network use

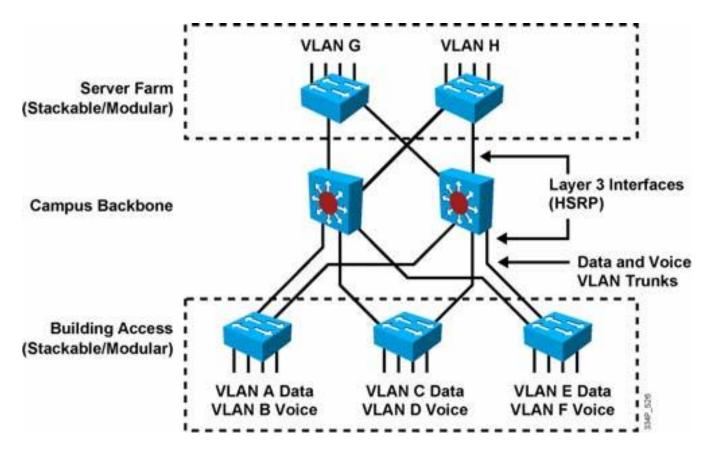
Distribution Layer

- Aggregates access nodes and uplinks
- Provides redundant connections and devices for high availability
- Offers routing services such as summarization, redistribution, and default gateways
- Implements policies including filtering, security, and QoS mechanisms
- Segments workgroups and isolates problems

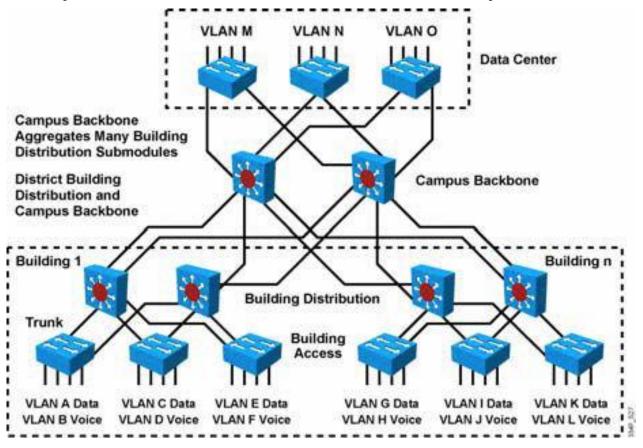


Core Layer (Backbone)

- The core layer is a high-speed backbone and aggregation point for the enterprise.
- It provides reliability through redundancy and fast convergence.

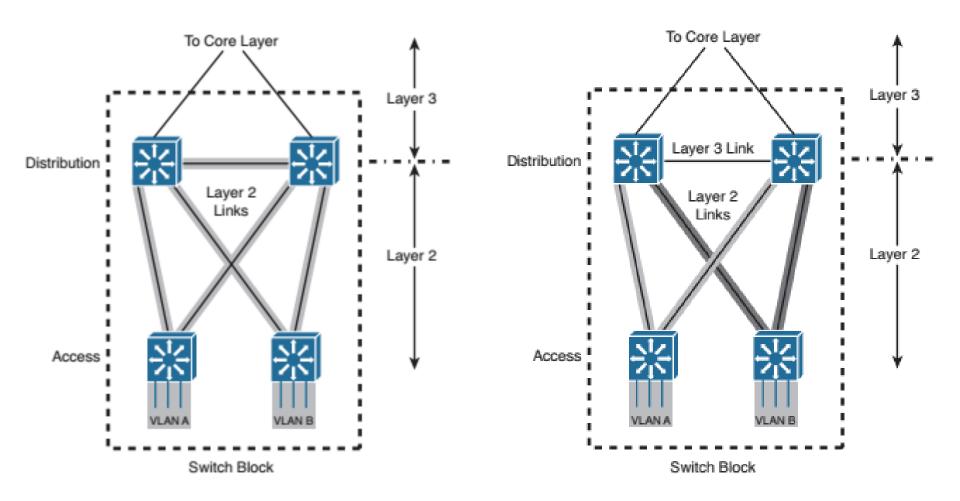

The separate core layer helps in scalability during future

growth


Small Size Network

- Less than 200 end stations
- Collapsed core (core and distribution form one layer

Medium Size Network


- Cca 200 up to 1000 end stations
- Redundancy of switches on distribution layer

Large Size Networks

- Strictly following hierarchical design and boundaries between layers
- Backbone and on distribution layer is usually place for Catalyst 6800 switches or high-end routers like ASR
- In datacenters specialized switches Nexus 5000/7000

Redundancy in the network design

L3 access

- Fast convergence of routing protocols and updates
- Routing can load balance packets across the redundant uplinks
- Access switches must support routing functions

Best practices for hierarchical design

- Design each layer with pairs of switches.
- Connect each switch to the next higher layer with two links for redundancy
- Connect each pair of distribution switches with a link
- Do not connect the access layer switches to each other (unless logical stack).
- Do not extend VLANs beyond distribution switches. The distribution layer should always be the boundary of VLANs, subnets, and broadcasts.
- VLAN traffic should not traverse the network core.

Enterprise Campus L2 Devices

Switch Properties 1

- Form factor (size)
 - Number of rack units (R or RU)
 - 1 RU = 1,75" = 44,45 mm
- Configuration
 - Fixed
 - Modular
 - Supervisors and link cards
 - ASICs
 - Power supply

Stackable

 Stacking of routers which from outside behave as one switch 1 rack unit (1U)

Switch Properties 2

Port density

Number of available ports on device

Forwarding rate (overall bandwidth)

Efficiency of device datagram switching in bps resp. pps

Link aggregation

Option to combine multiple ports to one logical interconnection

Power over Ethernet (PoE)

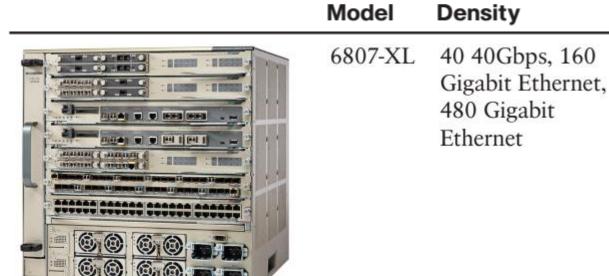
- To provide power for IP phones, wireless Aps or CATV
- Increasing cost of devices

Multilayer capabilities

L3 routing, load-balancing

Switches for 3Layered Network Design

- Access layer
 - Catalyst 2960X (L2 switch)
 - Catalyst 3650, 3850, 4500 (L3 switch)
 - Wifi Aps
- Distribution layer
 - Catalyst 4500-X, 4500-E, 6800
- Core
 - Catalyst 4500, 6800


Access layer

Catalyst Model	Max Port Density	Uplinks	Max Backplane	Other Features
2960-X	384 (Up to 8 48-port switches in a stack)	2 10GE or 4 1 Gigabit Ethernet per switch	80 Gbps	RIP, OSPF available for routed access layer; PoE+
3650	432 (Up to 9 48-port switches in a stack)	2 Gigabit Ethernet or 4 10GE	160 Gbps	Full-featured routing available, integrated wireless controller, PoE+
3850	432 (Up to 9 48-port switches in a stack)	4 Gigabit Ethernet, 4 10GE	480 Gbps	Full-featured routing available, integrated wireless controller, PoE+, UPoE

Distribution layer

Catalyst Model	Max Port Density	Max Backplane	Other Features
4500-X	80 10GE	1.6 Tbps	Dual-chassis Virtual Switching System (VSS) redundancy
4500E	96 10GE or 384 Gigabit Ethernet	928 Gbps	Dual supervisors

Core layer

Catalyst

Max Port

Ethernet

A Brief Introduction

- Ethernet was invented in the first half of 70s in XEROX Inc.
- One of inventors was Robert Metcalf, founder of 3Com
- It is cheap, undemanding, best-effort technology
- Currently is wide-spread dominant L2 technology for LANs which targets also SANs, MANs and even WANs
 - Carrier Ethernet
 - Data Center Bridging
 - Synchronous Ethernet
- Speeds from 10 Mbps up to 100 Gbps

Questions FYI and Discussion

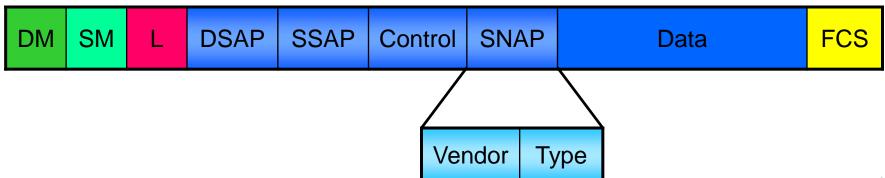
- What is collision and broadcast domain?
- Why has frame set minimum and maximum length?
- What is slot time?
- How does CSMA/CD work?
- How does full-duplex work on TP cabling? How is it related with CSMA/CD?
- What is collision? What kind of collision types do exist?
- What types of active network devices are/were usually used in Ethernet?
- Is there any limit for number of devices in cascade?
- How does auto-negotiation operate? What if it does not work?
- What is Auto-MDIX and when does it work properly?
- Is Ethernet synchronous technology?
- How many Ethernet frame types actually do exist?

Ethernet Frame Format (1)

• Multiple types of Ethernet frame exists and all of them has same base structure:

- Currently known variants:
 - Ethernet II (aka DIX)
 - 802.3 (sometimes referred as 802.2 because of LLC header)
 - SNAP (aka 802.3 SNAP)
 - Novell Raw (IPX run over it)

Ethernet Frame Format 2


Ethernet II

Ethernet 802.2 LLC

DM	SM L	DSAP	SSAP	Control	Data	FCS
----	------	------	------	---------	------	-----

Ethernet 802.3 SNAP

Configuration Tips&Tricks

Interface Default Configuration

• How to set interface to default configuration state?

```
Switch(config)# default interface interface-id
E.g.:
Switch(config)# default interface fa 0/1
```

• How to accomplish same thing with multiple interfaces?

```
Switch(config)# default interface range fa 0/1 - 24
```

Resetting Switch

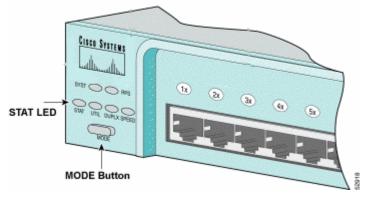
- Catalyst switches do not have NVRAM
 - NVRAM is just emulated in FLASH memory
 - Hence, startup configuration is stored in file flash:config.text
- Along with startup configuration is also VLAN and VTP configuration (vlan.dat) stored in FLASH
- Resetting switch means deleting "NVRAM" and also VLAN configuration:

```
Switch# erase startup-config
!or alternatively
Switch# write erase
Switch# delete vlan.dat !not necessary to write flash:vlan.dat
Switch# reload
```

Large Topology Reset

- Systematic approach is needed when resetting lab without breaking the interconnections
 - VTP is capable to renew current VLAN database configuration after reloading switch to blank state
- Recommended procedure:
 - 1. On all switches issue:

```
Switch(config)# interface range fa0/1 - 24, gi0/1 - 2
Switch(config-if)# shutdown
```


Only after completing previous step we can start to clear configurations and restart switches

Password Recovery Procedure

1) Unplug switch - Push and hold MODE - Plug switch again

2) Hold MODE button until amber blinking SYST turns to be

solid green

3) Enter following commands:

```
switch: flash_init
switch: load_helper !not necessary with newer IOS

switch: delete flash:config.text
!or alternatively
switch: rename flash:config.text flash:config.old

switch: boot
```

IOS Restoration

- Be aware of confusing erase startup-config resp. delete flash:vlan.dat with the command erase flash:
- Catalyst switch could upload IOS only through COM port (XMODEM protocol) – unfortunately not through Ethernet
- After getting to bootloader following must be issued:

```
switch: flash_init
switch: load_helper !not necessary with newer IOSes
switch: set BAUD 115200 !speed up console speed to 115.2 kbps
switch: format flash: !not mandatory
switch: copy xmodem: IOS_name flash: IOS_name
switch: unset BAUD !set console speed back to 9.6 kbps
switch: boot
```

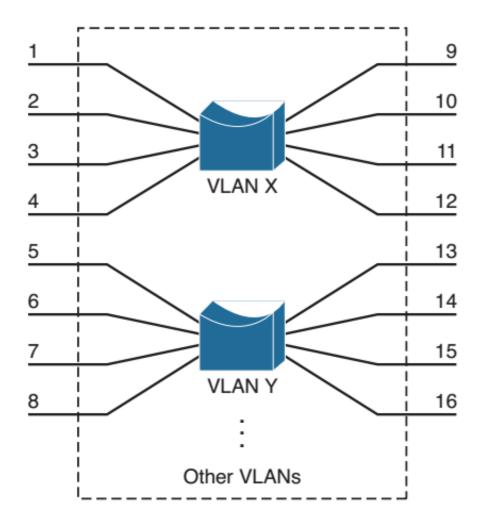
Treacherousness of Port Speed and Duplex (1)

Speed and duplex are configured in following manner:

```
Switch(config-if) # speed { 10 | 100 | 1000 | auto }
Switch(config-if) # duplex { half | full | auto }
```

- IF at least one of those parameters is set to auto THEN port has auto-negotiation ENABLED
 - In port "capabilities" are shown only alternatives according to fixed set parameter
- IF both parameters are set fixed THEN port has auto-negotiation DISABLED only whenever
 - As a consequence switch guess speed (from channel coding) but set half-duplex as a fallback parameter
 - Possible cause of severe troubles because of duplex mismatch!
- Hence there is strong difference between "auto-negotiation turned off" and "auto-negotiation advertising only one alternative"!!!

Treacherousness of Port Speed and Duplex 1


- IF auto-negotiation is turned off THEN auto-MDIX is not working!
- From praxis: Cat3560v2 turns auto-negotiation off but Cat2960 not
- Hence following principle:
 - IF speed and duplex must be fixedly configured THEN do it on both ends of link simultaneously
- Enforcing speed or duplex is in general not a very good idea!

Layer 2 switch operation

Basic switch operation

- Ethernet switch operates at L2, making decisions based on the destination MAC addresses found within the frames
- Provides isolation between connected host
 - Host connections can operate in full-duplex mode
 - On each switch port, the collision domain consists of the switch port itself and the devices directly connected to that port
 - Errors in frames are not propagated
 - You can limit broadcast traffic to a volume threshold

L2 switch

Forwarding Table

0000.1111.1111: port 11, vlan X 0000.2222.2222: port 6, vlan Y 0000.3333.3333: port 1, vlan X 0000.4444.4444: port 9, vlan X 0000.5555.5555: port 8, vlan Y 0000.6666.6666: port 14, vlan Y 0000.7777.7777: port 3, vlan X 0000.8888.8888: port 16, vlan Y

Broadcast: VLAN X: all VLAN X ports Broadcast: VLAN Y: all VLAN Y ports

Content-Addressable Memory (CAM)

- A CAM table is used for Layer 2 switching
- Switch stores the source MAC address, port of arrival,
 VLAN and timestamp
- By default, CAM table entries are kept for 300 seconds

```
Switch(config)# mac address-table aging-time seconds
```

 MAC addresses are learned dynamically from incoming frames

```
Switch(config)# mac address-table static mac-address
  vlan vlan-id interface type mod/num
```

Ternary Content-Addressable Memory (TCAM)

- a packet can be evaluated against an entire access list within a single table lookup
- Most switches have multiple TCAMs
 - inbound and outbound security and QoS ACLs, forwarding L3 decision
- Feature Manager (FM):
 - Compiles and merges ACLs into entries in the TCAM table
- Switching Database Manager (SDM):
 - the TCAM is partitioned into several areas that support different functions
 - configures or tunes the TCAM partitions

TCAM

Switch (config) # show platform tcam utilization

Switch (config) # show sdm prefer

```
The current template is "desktop default" template.

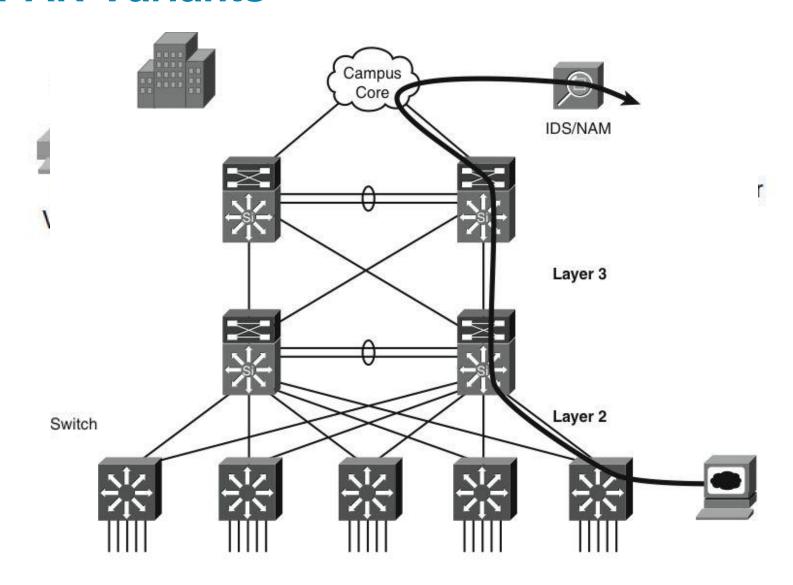
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

number of unicast mac addresses: 6K

number of IPv4 IGMP groups + multicast routes: 1K

number of IPv4 unicast routes: 8K

...
```


Switch(config)# sdm prefer template

Traffic Monitoring

Traffic Monitoring

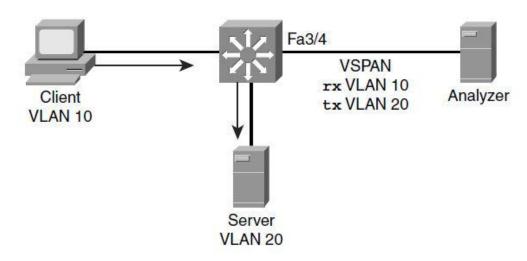
- Many times it is useful to monitor traffic on some ports
- Cisco introduces following monitoring feature
 - (VLAN) Switched Port Analyzer a.k.a. (V)SPAN
 - Remote SPAN (RSPAN)
 - Enhanced RSPAN (ERSPAN)
- Basic idea is that monitoring session is configured which consists of
 - Definition on which port (or VLAN) sniffing occurs
 - Definition to which port (or VLAN) is sniffed traffic sent

SPAN Variants

Configuring (V)SPAN

 SPAN is relation in which traffic from local ports or VLANs is replicated on concrete interface

```
Switch(config) # monitor session session-id source {interface


IFACE | vlan vlan-id [,][-] {rx | tx | both}

Switch(config) # monitor session session-id destination interface

IFACE [encapsulation {dot1q | isl}] [ingress vlan vlan-id]
```

- By default destination port is no longer capable of switching incoming frames are discarded
 - But it is possible to overcome this behavior by appending command ingress
- By default command encapsulation replicate bellow is needed whenever we want to monitor L2 protocols (e.g. CDP, DTP, VTP, STP, PAgP, LACP, ...) and keep original VLAN tags
 - Without this command all frames will be marked as "untagged" and service L2 protocols won't be captured

Example: VSPAN

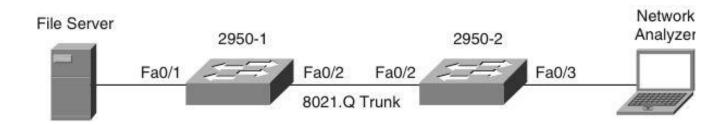

```
cat4k(config)# monitor session 1 source vlan 10 rx
cat4k(config)# monitor session 1 source vlan 20 tx
cat4k(config) # monitor session 1 destination interface FastEthernet 3/4
cat4k# show monitor session 1
Session 1
                       : Local Session
Type
Source VLANs
 RX Only
               : 10
 TX Only
               : 20
Destination Ports : Fa3/4
 Encapsulation: Native
 Ingress
                       : Disabled
```

Configuring RSPAN

- Remote SPAN is pair of relation where
 - Traffic is catch on source ports or VLAN(s) and sent to special RSPAN VLAN
 - Traffic inside RSPAN VLAN is then replicated to destination port on target switch
 - RSPAN VLAN could be used only for purpose of RSPAN
- Dedicate one VLAN as RSPAN VLAN:

```
Switch(config-vlan)# remote-span
```

On the source switch:

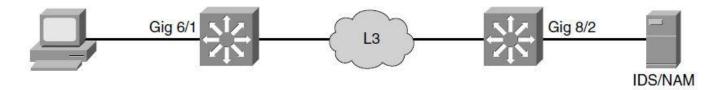

```
Switch(config) # monitor session session-id source {interface IFACE | vlan vlan-id} [,][-] {rx | tx | both}
Switch(config) # monitor session session-id destination remote vlan vlan-id
```

On the destination switch:

```
Switch(config) # monitor session session-id source {interface IFACE | vlan vlan-id [,][-] {rx | tx | both}

Switch(config) # monitor session session-id destination interface IFACE [encapsulation {dotlq | isl}] [ingress vlan vlan-id]
```

Example: RSPAN


```
2950-1(config) # vlan 100
2950-1(config-vlan) # remote-span
2950-1(config) # monitor session 1 source interface Fa 0/1
2950-1(config) # monitor session 1 destination remote vlan 100
reflector-port Fa0/24
2950-1(config) # interface Fa0/2
2950-1(config-if) # switchport mode trunk

2950-2(config) # monitor session 2 source remote vlan 100
2950-2(config) # monitor session 2 destination interface Fa0/3
2950-2(config) # interface Fa0/2
2950-2(config-if) # switchport mode trunk
```

Enhanced RSPAN

- Enhanced Remote SPAN (ERSPAN) is similar to RSPAN, but it supports source ports, source VLANs, and destination ports on different switches, even across the Layer 3 boundary
 - The payload of a Layer 3 ERSPAN packet is a copied Layer 2 Ethernet frame, excluding any ISL or 802.1Q tags
 - ERSPAN adds a 50-byte header to each copied Layer 2 Ethernet frame and replaces the 4-byte cyclic redundancy check (CRC) trailer
 - ERSPAN session carries SPAN traffic in GRE tunnel
 - Only for Catalyst6500
- ERSPAN supports jumbo frames that contain Layer 3 packets of up to 9202 bytes
 - IF the length of the copied Layer 2 Ethernet frame is greater than 9170 bytes (9152-byte Layer 3 packet) THEN ERSPAN truncates the copied Layer 2 Ethernet frame to 9202-byte

Example: ERSPAN

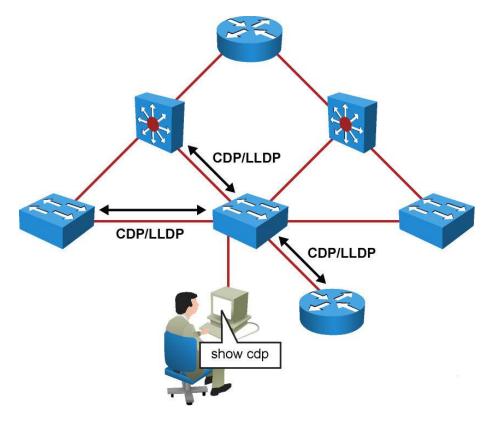

```
Switch1(config) # monitor session 66 type erspan-source
Switch1(config-mon-erspan-src) # source interface gigabitethernet 6/1
Switch1(config-mon-erspan-src) # destination
Switch1(config-mon-erspan-src-dst) # ip address 10.10.10.10
Switch1(config-mon-erspan-src-dst) # origin ip address 20.20.20.200
Switch1(config-mon-erspan-src-dst) # erspan-id 111

Switch2(config) # monitor session 60 type erspan-destination
Switch2(config-erspan-dst) # destination interface Gi8/2
Switch2(config-erspan-dst) # source
Switch2(config-erspan-dst-src) # ip address 10.10.10.10
Switch2(config-erspan-dst-src) # erspan-id 111
```

Useful Commands

```
show interfaces [IFACE]
show interfaces status
show interfaces description
show interfaces counters [errors]
show interfaces capabilities
test cable-diagnostics tdr
show cable-diagnostics tdr
```

The show interface capabilities Command


```
Router# show interfaces fastethernet 4/1 capabilities
FastEthernet4/1
Model: WS-X6348-RJ-45
Type: 10/100BaseTX
Speed: 10,100, auto
Duplex: half, full
Trunk encap. type: 802.10, ISL
Trunk mode: on, off, desirable, nonegotiate
Channel: ves
Broadcast suppression: percentage (0-100)
Flowcontrol: rx-(off,on),tx-(none)
Fast Start: ves
QOS scheduling: rx-(1q4t), tx-(2q2t)
CoS rewrite: yes
ToS rewrite: yes
Inline power: no
SPAN: source/destination
```

The test cable-diagnostics tdr Command

Neighbor Discovery Protocols

Neighbor Discovery Protocols

- Neighbor Discovery Protocols (NDP) provide a summary of directly connected switches, routers and other Cisco devices
- CDP is Cisco proprietary
- LLDP is vendor-neutral IEEE 802.1ab standard

Cisco Discovery Protocol

- Cisco Discovery Protocol (CDP) is multicast hello-based protocol periodically advertising device's attributes
- Uses TTL value in seconds to indicate freshness of information
- Cached CDP information are available to network management
- CDP is enabled by default with 60 s gap between consecutive messages
- Configuration:

```
Switch(config) # cdp timer seconds
Switch(config) # [no] cdp run
Switch(config-if) # [no] cdp enable
```

Displaying CDP Intel

Link Layer Discovery Protocol

- Link Layer Discovery Protocol (LLDP) is open-standard clone of CDP
- Supported by HP, Juniper and other vendors as unified solution
- LLDP allows more features to be announced
- LLDP is disabled by default on Cisco boxes
- Configuration

```
Switch(config)# lldp timer seconds
Switch(config)# [no] lldp run
Switch(config-if)# [no] lldp enable
```

Displaying LLDP Intel

```
switch(config) # 1ldp run
switch(config)# end
switch# show lldp neighbor
Capability codes:
       (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
       (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID
              Local Intf
                             Hold-time Capability
                                                           Port ID
c2960-8
           Fa0/8
                                                           Fa0/8
                             120
                                            В
Total entries displayed: 1
```


Slides adapted by <u>Vladimír Veselý</u> and <u>Matěj Grégr</u> partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

The last update: 2016-09-28