

Complex Networks Maintenance and Troubleshooting

CCNP TSHOOT: Module 1, 2, 3

Agenda

- Planning Maintenance for Complex Networks
- Troubleshooting Processes for Complex Enterprise Networks
- Using Maintenance and Troubleshooting Tools and Applications

Planning Maintenance

Network Engineer/Admin's Job

- 1) Device installation and maintenance
 - Installing devices, creating, backing up configuration
- 2) Failure response
 - Device or link failure, replacing equipment, restoring backups, supporting users
- 3) Network performance
 - Capacity planning, performance tuning, usage monitoring
- 4) Business procedures
 - Documenting, compliance auditing, SLA management
- 5) Security
 - Implementing security procedures, penetration testing

Structured vs. Interrupt-driven Maintenance

Interrupt driven

- Usually in smaller networks because overhead of structured network is large
- Reaction to a problem, not prevention

Structured driven

- Proactive approach with predefines processes
- Response to incident is more efficient

- You cannot avoid interrupt-driven work entirely!
 - Failures will happen, you cannot plan them
 - Structured driven approach reduce the amount of interruptdriven work

Structured Maintenance Advantages

Proactive instead of reactive

Discover and prevent problems before they happen.

Reduced network downtime

- Maximize mean time between failures (MTBF)
- Minimize mean time to repair (MTTR)

More cost effective

Performance monitoring and capacity planning for budgeting

Better alignment with business objectives

- Time and resources are allocated to processes based on importance to the business
- E.g., Upgrades and major maintenance jobs are not scheduled during critical business hours

Improved network security

Up-to-date prevention and detection mechanisms

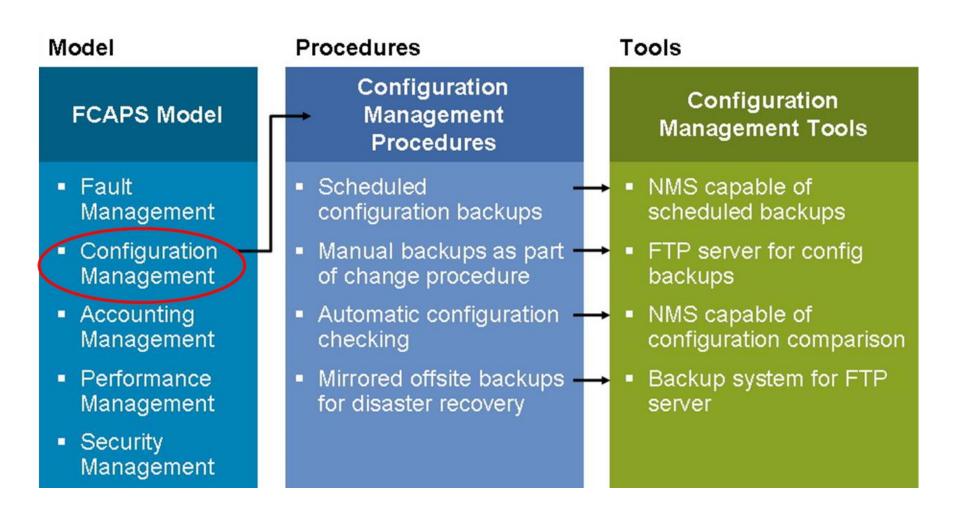
Maintenance Models

IT Infrastructure Library (ITIL)

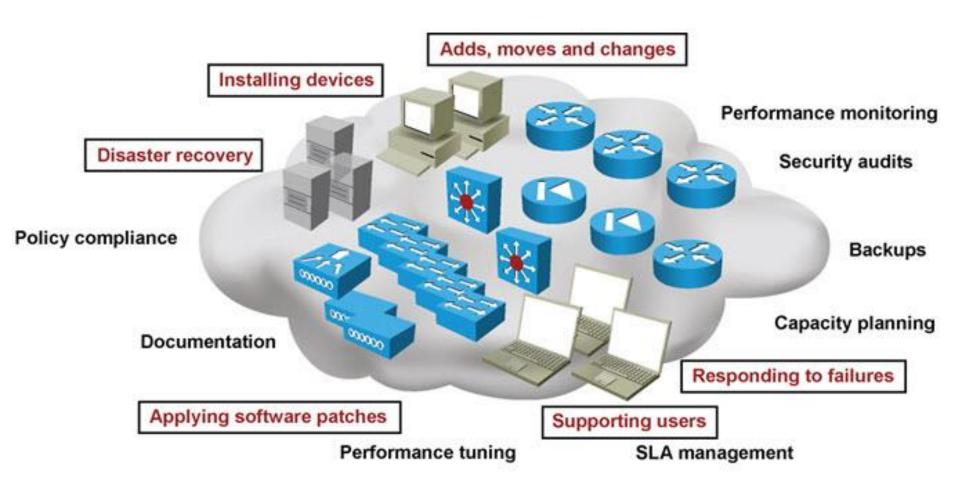
Framework of best practices for IT Service Management

ISO – FCAPS

- Fault management
- Configuration management
- Accounting management
- Performance Management
- Security Management
- http://www.ciscopress.com/bookstore/product.asp?isbn=1578701805.


ITU-T – Telecommunications Management Network

M.3000 for Bussiness, Service, Network and Element management


Cisco Lifecycle Services Phases – PPDIOO

Prepare, Plan, Design, Implement, Operate, and Optimize

FCAPS Model

Network Maintenance Processes

Network Maintenance Processes

Accommodating Adds, Moves, and Changes

 Affects users, computers, printers, servers and phones and potential changes in configuration and cabling.

Installation and configuration of new devices

 Includes adding ports, link capacity and network devices.

Replacement of failed devices

 Done through service contracts or by inhouse support engineers.

Backup of device configurations and software

 Good backups of both software and configurations can simplify and reduce downtime

Troubleshooting link and device failures

 Diagnosing and resolving failures related to network components

Software upgrading or patching

 Requires that you stay informed of available software upgrades or patches and use them if necessary. These can address critical performance or security vulnerabilities.

Network monitoring

 Using mechanisms such as router, firewall logs or by using sophisticated network monitoring applications

Performance measurement and capacity planning

 Facilitates planning for upgrades (capacity planning) to help prevent bottlenecks, congestion and failures.

Writing and updating documentation

 Current network documentation is used for reference during implementation, administration, and troubleshooting is a mandatory network maintenance task.

Network Maintenance Planning

Scheduling maintenance

 Reduces network downtime. Prevent long-term maintenance tasks from being forgotten. Disruptive maintenance tasks are scheduled during assigned maintenance windows.

Formalizing change control procedures

• Which changes require authorization and who is responsible? What kind of preparation is needed? What verification is required? Does documentation need to be updated?

Establishing network documentation procedures

 Includes network drawings, connection documentation, equipment lists, IP address administration, configurations and design documentation.

Establishing effective communication

• Who is making changes and when? Are affected parties aware of the changes and results? What conclusions can be drawn?

Defining templates/procedures/conventions

 Examples include: Logging and debug timestamps settings (local time or UTC), access list guidelines (end with explicit "deny any"), IP subnet and address assignment (address allocated to the local gateway).

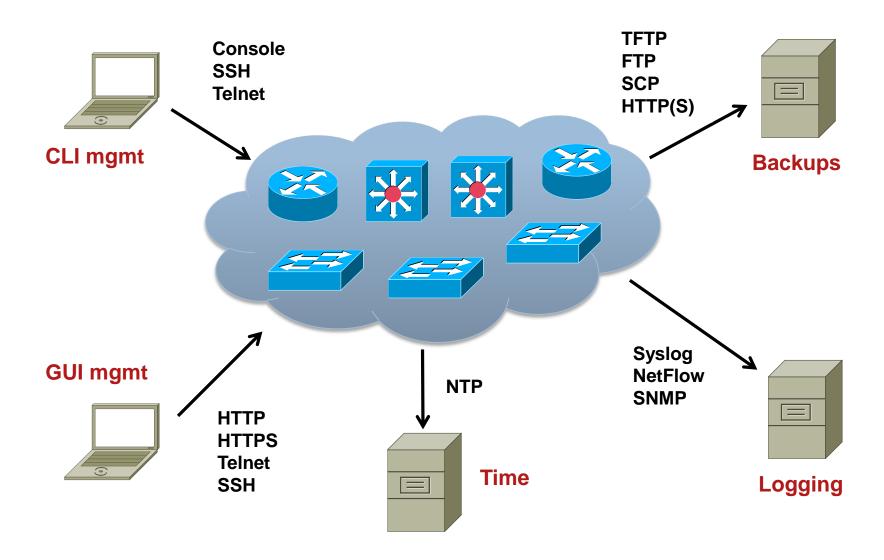
Planning for disaster recovery

 Includes replacement hardware, current software and configuration information, tools, licenses (if applicable) and knowledge of the procedures required.

Documentation

- Accurate documentation is useful for effective troubleshooting
- Outdated documentation is worse than no documentation!
 - Documenting the problem and changes during troubleshooting is usually the last things on your mind

- Network diagrams help quickly isolate part of the network
- IP address scheme, patch scheme help to locate devices
- Automated system for backing up configs, diffs, rollback etc. (e.g. rancid)


Network Baseline

- = information about "normal" network behavior
- Consists of
 - Link and device performance statistics
 - can include basic performance statistics like
 - the interface load for critical network links
 - the CPU load and memory usage of routers and switches
 - these values can be polled and collected on a regular basis
 - Accounting of network traffic (RMON, NBAR, NetFlow)
 - Measurement of network performance characteristics (IP SLA)
 - measure critical performance indicators like delay and jitter across the network infrastructure

Backup Handling

Fundamental Maintenance Tools

Cisco Configuration and Documentation Tools

Dynamic Configuration Tool

- Aids in creating hardware configurations
- Verifies compatibility of hardware and software selected
- Produces a Bill of Materials (BoM) with part numbers
- https://apps.cisco.com/qtc/config/html/configureHomeGuest.html

Cisco Feature Navigator

- Quickly finds Cisco IOS Software release for required features
- http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp

SNMP Object Navigator

- Translates SNMP Object Identifiers (OID) into object names
- Allows download of SNMP MIB files
- Verify supported MIBs for a Cisco IOS Software version
- http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en

Cisco Power Calculator

- Calculates power supply requirements a PoE hardware configuration
- Requires CCO login

Network Time Protocol

- NTP specified in the RFC 5905, used to synchronize computer clocks in the Internet
- NTP uses hierarchy of servers. Accuracy of each server is defined by a number called the stratum
 - Stratum 0: Reference clock, e.g. atomic (cesium, rubidium) clocks, GPS clocks etc.
 - Stratum 1: NTP server whose system clocks are synchronized to within a few microseconds of their attached stratum 0 device
 - Stratum N: NTP server synchronized with NTP stratum N-1 server
- NTP is necessary for several reasons:
 - Key-chains key expiration
 - Certificates expiration
 - Logs correlation logs from several devices

Backup and Restore using FTP

Copy using FTP with stored username and password

```
R1(config)# ip ftp username backup
R1(config)# ip ftp password san-fran
R1(config)# exit
R1# copy startup-config ftp://10.1.152.1/R1-test.cfg
Address or name of remote host [10.1.152.1]?
Destination filename [R1-test.cfg]?
Writing R1-test.cfg !
2323 bytes copied in 0.304 secs (7641 bytes/sec)
```

Copy using FTP with specified username and password

```
R1# copy startup-config ftp://backup:san-fran@10.1.152.1/R1-test.cfg
Address or name of remote host [10.1.152.1]?
Destination filename [R1-test.cfg]?
Writing R1-test.cfg !
2323 bytes copied in 0.268 secs (8668 bytes/sec)
```

Backup and Restore using HTTP/HTTPS

Copy using HTTP with stored username and password

```
R1(config)# ip http client username backup
R1(config)# ip http client password san-fran
R1(config)# exit
R1# copy startup-config http://10.1.152.1/R1-test.cfg
! Or
R1# copy startup-config https://10.1.152.1/R1-test.cfg
Address or name of remote host [10.1.152.1]?
Destination filename [R1-test.cfg]?
Writing R1-test.cfg !
2323 bytes copied in 0.304 secs (7641 bytes/sec)
```

 Username or password can specified as a command line argument similarly to FTP

Backup and Restore using Archive

Setting up the configuration archive

```
R1(config) # archive
R1(config-archive) # path flash:/config-archive/$h-config
R1(config-archive) # write-memory
R1(config-archive) # time-period 10080
```

Verifying command output

```
R1# show archive
There are currently 3 archive configurations saved.
The next archive file will be named flash:/config-archive/R1-config-4
Archive # Name

0
1 flash:/config-archive/R1-config-1
2 flash:/config-archive/R1-config-2
5 flash:/config-archive/R1-config-3 <- Most Recent
```

Backup and Restore using configure replace

```
R1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) # hostname TEST
TEST (config) # ^Z
TEST# configure replace flash:config-archive/R1-config-3 list
This will apply all necessary additions and deletions
to replace the current running configuration with the
contents of the specified configuration file, which is
assumed to be a complete configuration, not a partial
configuration. Enter Y if you are sure you want to proceed. ? [no]: yes
!Pass 1
!List of Commands:
no hostname TEST
hostname RO1
end
Total number of passes: 1
Rollback Done
```

Tracking Changes in the Configuration

Enable logging commands and sending them to syslog server

```
R1(config) # archive
R1(config-archive) # log config
R1(config-archive-log-cfg) # logging size 500
R1(config-archive-log-cfg) # hidekeys
R1(config-archive-log-cfg) # notify syslog
R1(config-archive-log-cfg) # logging enable
```

Show changes

```
R1# show archive log config all
 idx
                       user@line
                                       Logged command
       sess
                    console@console
                                         logging enable
    234567
          1
1
1
1
                    console@console
                                         exit
                    console@console
                                          exit
                                     linterface 100
                    console@console
                                        description => Local RID <=
                    console@console
                                        ip address 192.0.2.1 255.0.0.0
                    console@console
                    console@console
                                       | exit
                    console@console
                                      |no ip domain lookup
```

Resilient Configuration

- Some attacks (and configuration attempts ⊕) leads to IOS and configuration corruption
- Resilient configuration is protective feature available since 12.3(8)T
 - Backs up IOS and configuration to "invisible files" on flash
 - These files are not directly accessible via IOS commands and cannot be deleted through format or erase
 - They can be used to recover original IOS or configuration
 - Resilient Configuration cannot be remotely deactivated, only through console connection
 - Available on routers

Configuration of RC

IOS backup:

```
Router(config)# secure boot-image
```

Config backup:

```
Router(config) # secure boot-config
```

Veryfing configuration:

```
Router# show secure [bootset]
```

- IOS recovery is done through ROMMON and no secure boot-image
- Configuration recovery is done with

```
Router (config) # secure boot-config restore cieľový-súbor
```

Disaster Recovery Tools

- Successful disaster recovery is dependent on the existence of the following:
 - Up to date configuration backups
 - Up to date software backups
 - Up to date hardware inventories
 - Configuration and software provisioning tools

Troubleshooting Processes

Structured Approaches

 IF there is a problem THEN process starts in the head o troubleshooter

Top-down

Troubleshoot from the application layer down to the physical layer

Bottom-up

Troubleshoot from the physical layer up to the application layer

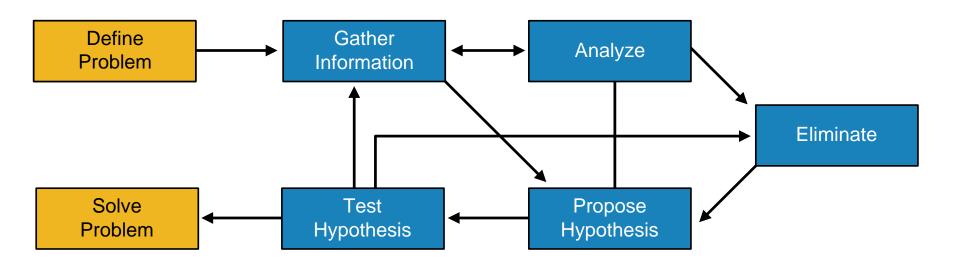
Divide and conquer

Start in the middle of the OSI model, based on findings move up/down

Follow-the-path

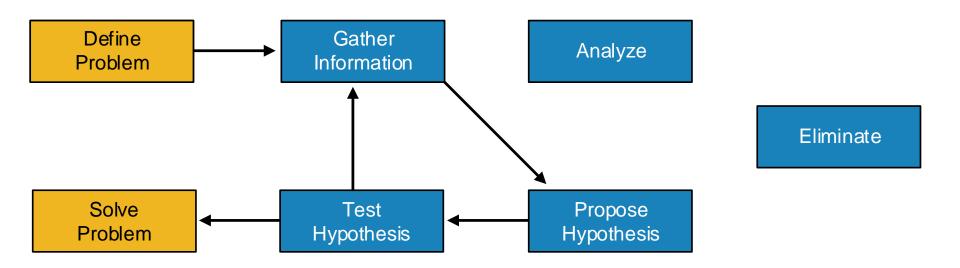
Follow the path that packets travels through the network

Spot the differences

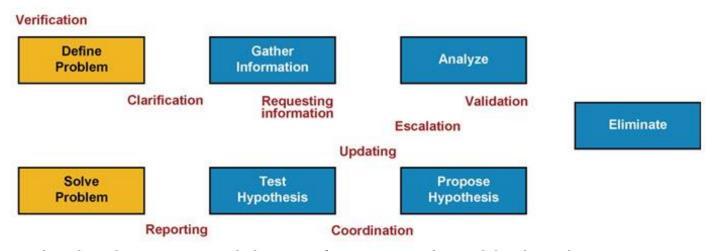

Check differences between working/not working device (e.g. configuration)

Move the problem

Change a switch port / device, observe whether the problem moves

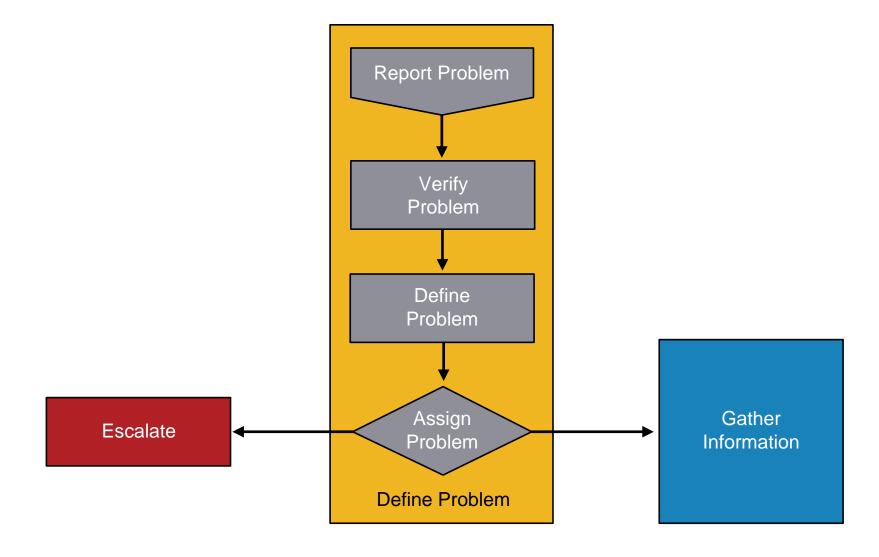

Structured Approach

 Independently on chosen approach it is mandatory to progress structurally and systematically



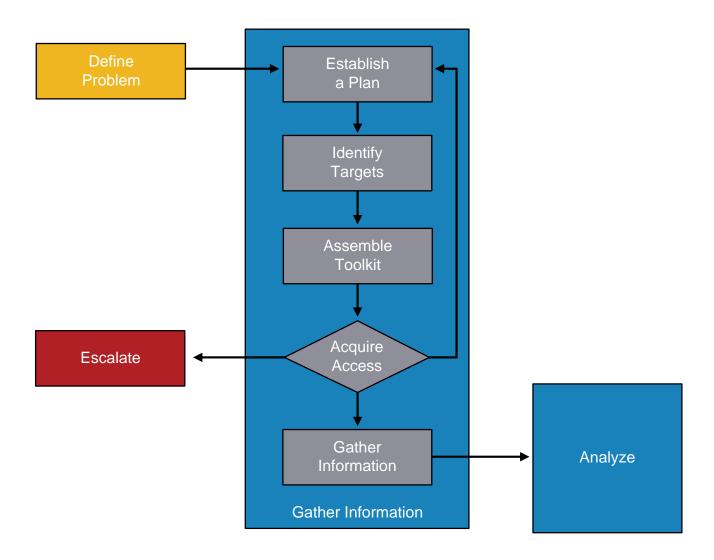
Shoot from the Hip Approach

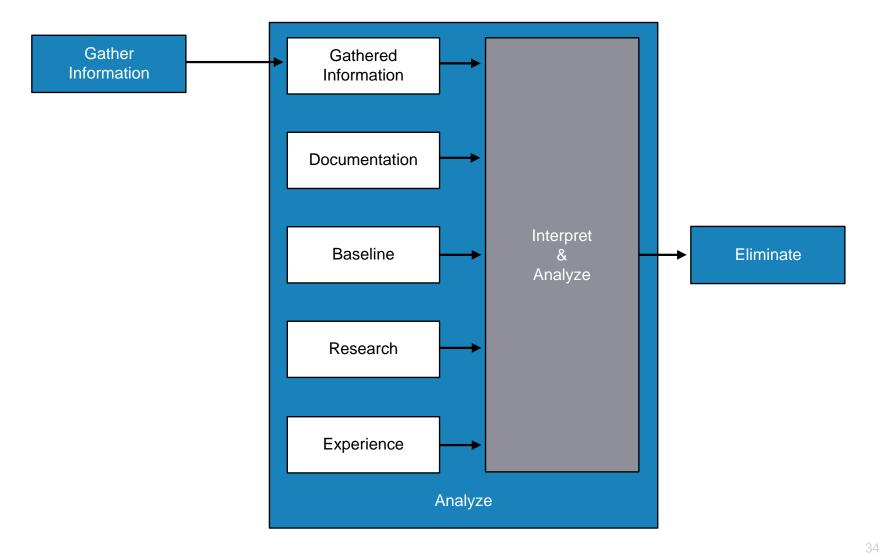
- Short observation, quick change, observe solution
- Suitable for experienced troubleshooter



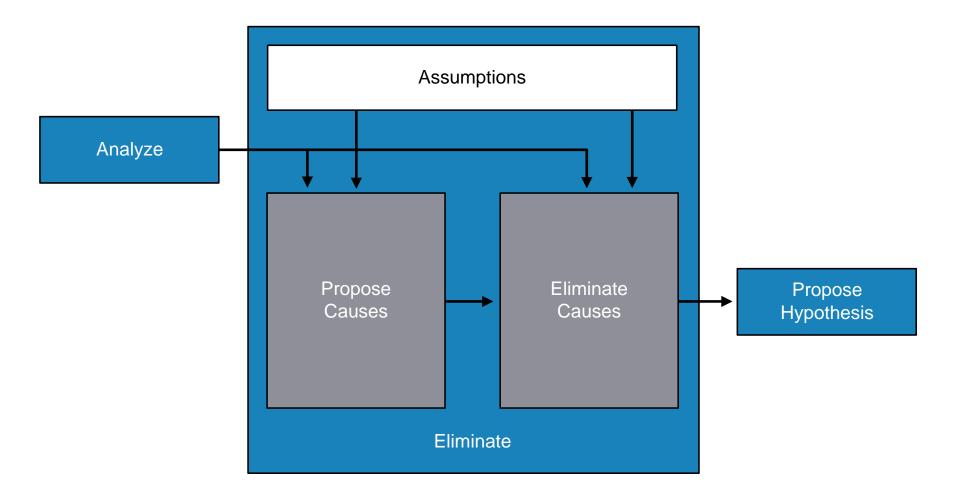
Communication

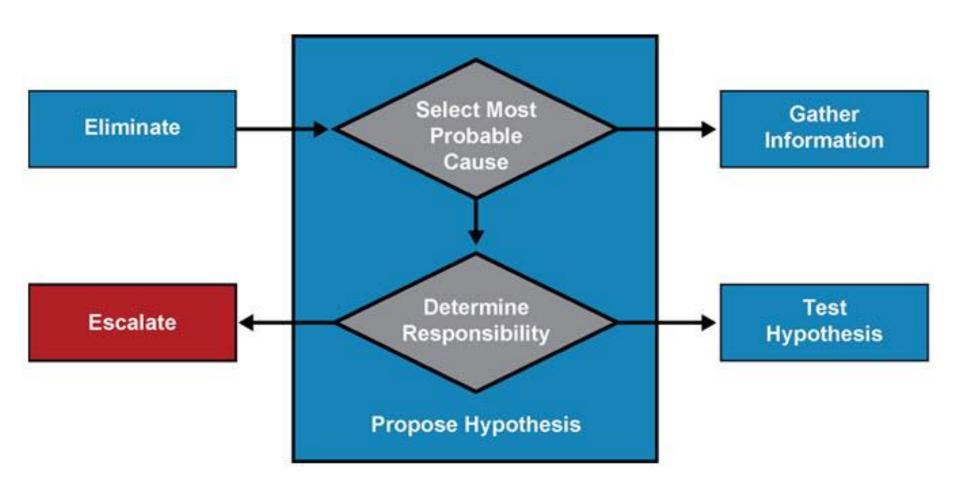
- Communication is an essential part of structured troubleshooting
- 1) Define Problem
 - Clarification is necessary. Asking good questions, carefully listening
- 2) Gather Information
 - Requesting information from others engineers or users
- 3) Analyze
 - Solitary process, however consultation with more experienced engineers is often useful
- 4) Propose and Test Hypothesis
 - Changes can be disruptive, users can be impacted. Communicate what you are doing and why
 you are doing it.
- 5) Solving Problem
 - Report back to the person who reported the problem.

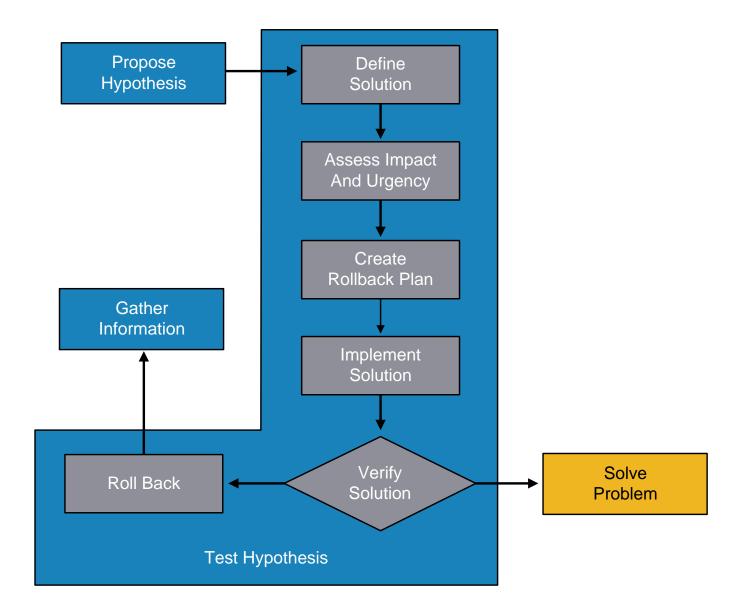

1 Define the Problem

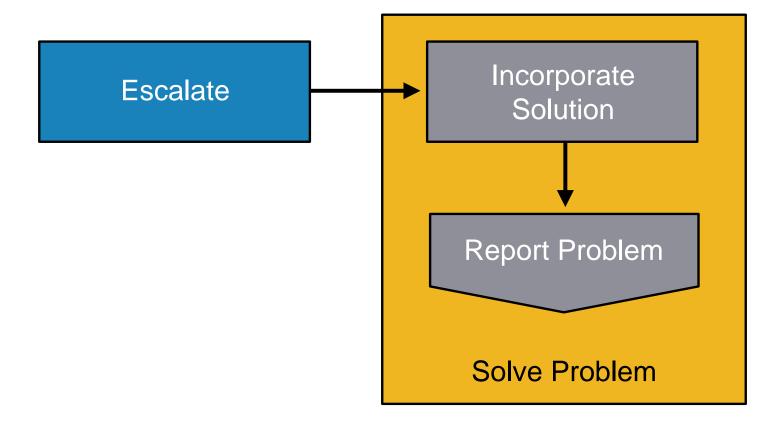

Verify Problem

- User usually reports symptoms not causes of problem
 - Symptom is only external manifestation of problem
 - However, to successfully solve problem means to get rid off the cause
 - Knowledge of protocols and technologies helps a lot
- Following questions are important for verification
 - When the problem occured first?
 - Had it ever worked at all?


Gather Information


Analyze


4 Analyze


Propose Hypothesis

Test Hypothesis

Solve Problem

Spot the Differences Example

Branch1 is in good working order

```
Branch1# show ip route

<output omitted>
     10.0.0.0/24 is subnetted, 1 subnets

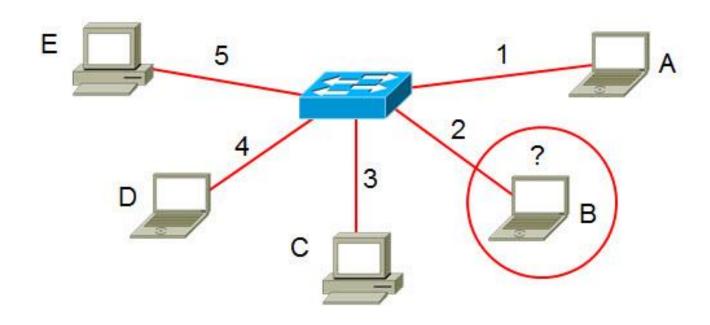
C     10.132.125.0 is directly connected, FastEthernet4

C     192.168.36.0/24 is directly connected, BVI1

S*     0.0.0.0/0 [254/0] via 10.132.125.1
```

Branch2 has connectivity problems

```
Branch2# show ip route


<output omitted>
     10.0.0.0/24 is subnetted, 1 subnets

C     10.132.125.0 is directly connected, FastEthernet4

C     192.168.36.0/24 is directly connected, BVI1
```

Move the Problem Example

- Laptop B is having network problems
 - Swap cable with the working device (e.g. laptop A)
 - Swap switch port
 - Replace switch

IOS Troubleshooting Tools

Tricks with show ip route 1

```
R1# show ip route 10.1.193.2
Routing entry for 10.1.193.0/30
Known via "connected", distance 0, metric 0 (connected, via interface)
Redistributing via eigrp 1
Routing Descriptor Blocks:
* directly connected, via Serial0/0/1
Route metric is 0, traffic share count is 1

R1# show ip route 10.1.193.10
% subnet not in table
```

Tricks with show ip route 2

```
R1# show ip route
< output omitted >
     192.168.1.0/30 is subnetted, 1 subnets
C
        192.168.1.0 is directly connected, Loopback0
R1# show ip route 192.168.1.0
Routing entry for 192.168.1.0/30, 1 known subnets
  Attached (1 connections)
        192.168.1.0 is directly connected, Loopback0
C
R1# show ip route 192.168.1.0 255.255.255.252
Routing entry for 192.168.1.0/30
  Known via "connected", distance 0, metric 0 (connected, via interface)
  Routing Descriptor Blocks:
  * directly connected, via Loopback0
      Route metric is 0, traffic share count is 1
```

Filtering of show Command 1

Using pipes with include, exclude and begin

```
R1# show processes cpu | include IP Input
        3149172 7922812 397 0.24% 0.15% 0.05% 0 IP Input
  71
S1# show ip interface brief | exclude unassigned
Interface
                     IP-Address OK? Method Status
                                                            Protocol
Vlan128
                    10.1.156.1 YES NVRAM up
                                                               up
S1# show running-config | begin line vty
line vty 0 4
 transport input telnet ssh
line vty 5 15
 transport input telnet ssh
End
R1# show processes cpu| include IP Input
% Invalid input detected at '^' marker.
```

Filtering of show Command 2

Using pipes with section and ^

```
R1# show running-config | section router eigrp
router eigrp 1
network 10.1.192.2 0.0.0.0
network 10.1.192.10 0.0.0.0
network 10.1.193.1 0.0.0.0
no auto-summary

R1# show processes cpu | include ^CPU|IP Input
CPU utilization for five seconds: 1%/0%; one minute: 1%; five minutes: 1%
71 3149424 7923898 397 0.24% 0.04% 0.00% 0 IP Input
```

Collecting with show Command 1

Using the redirect and tee options

```
R1# show tech-support | redirect tftp://192.168.37.2/show-tech.txt
R1# show ip interface brief | tee flash:show-int-brief.txt
Interface
                          IP-Address
                                          OK? Method Status
Protocol
                          10.1.192.2
FastEthernet0/0
                                         YES manual up
                                                                          up
FastEthernet0/1
                          10.1.192.10 YES manual up
                                                                          up
                          10.1.220.1
Loopback0
                                          YES manual up
                                                                          up
R1# dir flash:
Directory of flash:/
 1 -rw- 23361156 Mar 2 2009 16:25:54 -08:00 c1841-advipservicesk9mz.1243.bin
             680 Mar 7 2010 02:16:56 -08:00 show-int-brief.txt
```

Collecting with show Command 2

Using the append option and the more command

```
R1# show version | append flash:show-commands.txt
R1# show ip interface brief | append flash:show-commands.txt
R1# more flash:show-commands.txt
Cisco IOS Software, 1841 Software (C1841-ADVIPSERVICESK9-M), Version 12.4(23),
RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2008 by Cisco Systems, Inc.
Compiled Sat 08-Nov-08 20:07 by prod rel team
ROM: System Bootstrap, Version 12.3(8r) T9, RELEASE SOFTWARE (fc1)
R1 uptime is 3 days, 1 hour, 22 minutes
< output omitted >
Interface
                           IP-Address
                                          OK? Method Status
Protocol
FastEthernet0/0
                          10.1.192.2
                                          YES manual up
                                                                            up
FastEthernet0/1
                          10.1.192.10
                                          YES manual up
                                                                            up
```

Router# ping ip-address | hostname [repeat repeat-count
size datagram-size source [address | interface] df-bit]

Parameter	Description
repeat repeat-count	Number of ping packets that are sent to the destination address. The default is 5.
size datagram-size	Size of the ping packet (in bytes). Default: 100 bytes.
source [address interface]	The interface or IP address of the router to use as a source address for the probes.
df-bit	Enables the "do-not-fragment" bit in the IP header.

Using the ping extended option: source

```
R1# ping 10.1.156.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.156.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

R1# ping 10.1.156.1 source FastEthernet 0/0

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.156.1, timeout is 2 seconds:
Packet sent with a source address of 10.1.192.2

.....

Success rate is 0 percent (0/5)
```

Using the ping extended option: df-bit

```
R1# ping 10.1.221.1 size 1476 df-bit
Type escape sequence to abort.
Sending 5, 1476-byte ICMP Echos to 10.1.221.1, timeout is 2 seconds:
Packet sent with the DF bit set
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 184/189/193 ms
R1# ping 10.1.221.1 size 1477 df-bit
Type escape sequence to abort.
Sending 5, 1477-byte ICMP Echos to 10.1.221.1, timeout is 2 seconds:
Packet sent with the DF bit set
M.M.M
Success rate is 0 percent (0/5)
```

Explanation of ping results characters

- ! Each exclamation point indicates receipt of a reply.
- Each period indicates a timeout waiting for a reply.
- U A destination unreachable ICMP message was received.
- Q Source quench (destination too busy).
- M Could not fragment (MTU related).
- ? Unknown packet type.
- & Packet lifetime exceeded

Pinging (5)

Using the ping extended prompt mode

```
R1# ping
Protocol [ip]:
Target IP address: 10.1.221.1
Repeat count [5]: 1
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface:
Type of service [0]:
Set DF bit in IP header? [no]: yes
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]: y
Sweep min size [36]: 1400
Sweep max size [18024]: 1500
Sweep interval [1]:
Type escape sequence to abort.
Sending 101, [1400..1500]-byte ICMP Echos to 10.1.221.1, timeout is 2 seconds:
<output omitted>
```

Testing Network Connectivity

Using Telnet to test the Transport and Application Layer

```
R1# telnet 192.168.37.2 80
Trying 192.168.37.2, 80 ... Open
GET
<html><body><h1>It works!</h1></body></html>
[Connection to 192.168.37.2 closed by foreign host]

R1# telnet 192.168.37.2 25
Trying 192.168.37.2, 25 ...
% Connection refused by remote host
```

Collecting Real-time Information

The debug ip packet command output

```
R1# debug ip packet

IP: s=172.69.13.44 (Fddi0), d=10.125.254.1 (Serial2), g=172.69.16.2, forward

IP: s=172.69.1.57 (Ethernet4), d=10.36.125.2 (Serial2), g=172.69.16.2, forward

IP: s=172.69.1.6 (Ethernet4), d=255.255.255.255, rcvd 2

IP: s=172.69.1.55 (Ethernet4), d=172.69.2.42 (Fddi0), g=172.69.13.6, forward

IP: s=172.69.89.33 (Ethernet2), d=10.130.2.156 (Serial2), g=172.69.16.2, forward

IP: s=172.69.1.27 (Ethernet4), d=172.69.43.126 (Fddi1), g=172.69.23.5, forward

IP: s=172.69.1.27 (Ethernet4), d=172.69.43.126 (Fddi0), g=172.69.13.6, forward

IP: s=172.69.1.27 (Ethernet4), d=255.255.255.255, rcvd 2

IP: s=172.69.1.57 (Ethernet4), d=255.255.255.255, rcvd 2

IP: s=172.69.1.57 (Ethernet4), d=10.36.125.2 (Serial2), g=172.69.16.2, access denied
```

Collecting Real-time Information

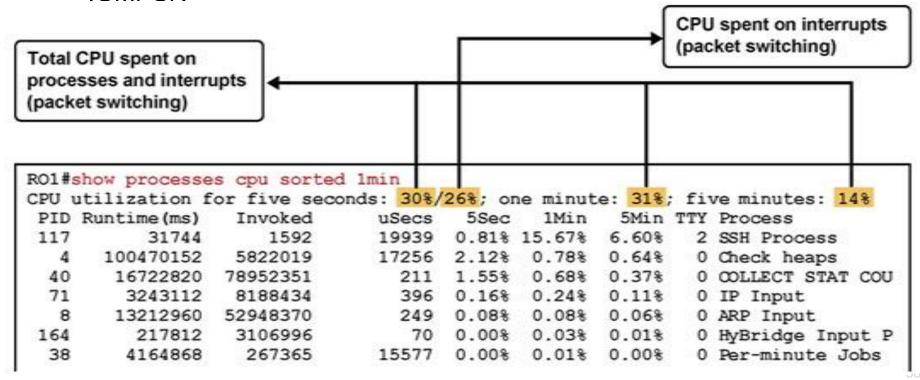
The debug ip rip command output

```
R2# debug ip rip
RIP: received v2 update from 10.0.23.3 on FastEthernet0/1
     10.0.3.0/24 via 0.0.0.0 in 1 hops
RIP: received v2 update from 10.0.12.1 on FastEthernet0/0
     10.0.1.0/24 via 0.0.0.0 in 1 hops
RIP: sending v2 update to 224.0.0.9 via FastEthernet0/1 (10.0.23.2)
<output omitted>
R2# debug condition interface fa0/1
Condition 1 set
RIP: sending v2 update to 224.0.0.9 via FastEthernet0/1 (10.0.23.2)
RIP: build update entries
        10.0.1.0/24 via 0.0.0.0, metric 2, tag 0
        10.0.2.0/24 via 0.0.0.0, metric 1, tag 0
        10.0.12.0/24 via 0.0.0.0, metric 1, tag 0
RIP: received v2 update from 10.0.23.3 on FastEthernet0/1
     10.0.3.0/24 via 0.0.0.0 in 1 hops
<output omitted>
```

Traffic Forwarding to the CPU

- Traffic being punted to the CPU is indirect proof of TCAM allocation failures or use of unsupported features
- The show controllers cpu-interface displays the statistics for packets that are forwarded by CPU

Switch# show controllers cpu-interface ASIC Rxbiterr Rxunder Fwdctfix Txbuflos Rxbufloc Rxbufdrain									
ASIC Rxbiterr	Rxunder	Fwdctfix	Txbuflos	Rxbufloc	Rxbufdrain				
ASICO 0	0	0	0	0	0				
cpu-queue-frames	retrieved	dropped	invalid	hol-block	stray				
rpc	0	0	0	0	0				
stp	1	0	0	0	0				
ipc	0	0	0	0	0				
routing protocol	28312	0	0	0	0				
L2 protocol	0	0	0	0	0				
remote console	0	0	0	0	0				
sw forwarding	13800556	0	0	0	0				
host	7648	0	0	0	0				
broadcast	462103	0	0	0	0				
cbt-to-spt	0	0	0	0	0				
igmp snooping	35916	0	0	0	0				
icmp	0	0	0	0	0				
logging	0	0	0	0	0				
rpf-fail	0	0	0	0	0				
dstats	0	0	0	0	0				
cpu heartbeat	22302361	0	0	0	0				


CPU Problems

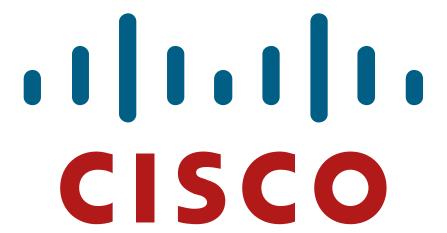
- First, determine whether interrupts or processes are the major cause of the increased CPU load
 - IF case of interrupts THEN troubleshoot packet forwarding and TCAM
 - IF case of processes THEN isolate responsible process and troubleshoot based on outcome
- In general, an average CPU load if 50% is not problematic just same as temporary 100% bursts
- Spikes in load could be caused by
 - Processor-intensive commands such as show tech-support, debug, show running, copy run start
 - Routing protocol updates
 - SNMP Polling

Checking CPU utilization with show processes cpu

Important processes are

- IP Input
- IP ARP
- SNMP Engine
- IGMPSN

Checking memory utilization with the **show memory** command


	Head	Total(b)	Used(b)	Free (b)	Lowest(b)	Largest(b)
Processor	820B1DB4	26534476	19686964	6847512	6288260	6712884
I/O	3A00000	6291456	3702900	2588556	2511168	2577468

Checking interfaces with the show interfaces command

```
R1# show interfaces FastEthernet 0/0
FastEthernet0/0 is up, line protocol is up
<output omitted>
  Last input 00:00:00, output 00:00:01, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/1120/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 2000 bits/sec, 3 packets/sec
  5 minute output rate 0 bits/sec, 1 packets/sec
     110834589 packets input, 1698341767 bytes
     Received 61734527 broadcasts, 0 runts, 0 giants, 565 throttles
     30 input errors, 5 CRC, 1 frame, 0 overrun, 25 ignored
     0 watchdog
     0 input packets with dribble condition detected
     35616938 packets output, 526385834 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     0 babbles, 0 late collision, 0 deferred
     O lost carrier, O no carrier
     0 output buffer failures, 0 output buffers swapped out
```

Additional hardware commands and tools:

- show controllers
- show platform
- show inventory
- show diag
- Generic Online Diagnostics (GOLD)
- Time Domain Reflectometer

Slides adapted by Vladimír Veselý and Matěj Grégr partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

Last update: 2017-03-06