··II··II·· CISCO

Troubleshooting Campus Switched Solutions

TSHOOT Module 4

Chapter 4 Objectives

- VLAN, VTP, and trunking problems
- Spanning tree and EtherChannel problems
- Problems with SVIs and inter-VLAN routing
- Problems related to first hop redundancy protocols such as HSRP, VRRP, and GLBP

Troubleshooting VLANs

LAN Switch Operation (1)

Host A pings Host B on the same VLAN (subnet).

 Host A determines that destination (Host B) IP is on the same subnet.

LAN Switch Operation (2)

If Host A does not have an entry for Host B in its ARP cache, it will ARP for the Host B MAC address.

LAN Switch Operation ③

The intermediate switches flood the ARP request over the 802.1Q trunk links.

LAN Switch Operation (4)

Host B sends a unicast ARP reply back to Host A.

LAN Switch Operation (5)

 Switches forward the ARP reply unicast frame toward Host A.

LAN Switch Operation (6)

- Host A encapsulates the IP packet (ICMP Echo Request) in a unicast frame and sends it to Host B.
- Switches forward ICMP Echo Request unicast frame toward Host B.

LAN Switch Operation (7)

 Switches forward ICMP Echo Reply unicast frame toward Host A.

LAN Switch Operation (8)

Host A Receives ICMP Echo Reply Back from Host B.

Layer1 and Layer2 Issues

Issues that could cause the communication to fail:

- Bad, missing, or miswired cables
- Bad ports
- Missing or wrong VLANs
- Misconfigured VTP settings
- Wrong VLAN setting on access ports
- Missing or misconfigured trunks
- Native VLAN mismatch
- VLANs not allowed on trunk

Verifying Layer 2 Forwarding (1)

- Are frames received on the correct VLAN?
 - This could point to VLAN or trunk misconfiguration as the cause of the problem.
- Are frames received on a correct port?
 - This could point to a physical problem, spanning tree issues, a native VLAN mismatch or duplicate MAC addresses.

Is the MAC address registered in the MAC address table?

 This tells you that the problem is most likely upstream from this switch. Investigate between the last point where you know that frames were received and this switch.

Useful Layer 2 Diagnostic Commands

show mac-address-table

Shows learned MAC addresses and corresponding port and VLAN associations.

show vlan

Verifies VLAN existence and port-to-VLAN associations.

show interfaces trunk

 Displays all interfaces configured as trunks, VLANs allowed and what the native VLAN is.

show interfaces switchport

- Provides a summary of all VLAN related information for interfaces.
 show platform forward interface
- Used to determine how the hardware would forward a frame.

traceroute mac

- Provides a list of switch hops (layer 2 path) that a frame from a specified source MAC address to a destination MAC address passes through. CDP must be enabled on all switches in the network for this command to work.
 traceroute mac ip
- Displays Layer 2 path taken between two IP hosts.

The traceroute mac Command

```
Router# traceroute mac 0000.0201.0601 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 (2.2.6.6) : Fa0/1 => Fa0/3
con5 (2.2.5.5) : Fa0/3 \Rightarrow Gi0/1
con1 (2.2.1.1) : Gi0/1 => Gi0/2
con2 (2.2.2.2) : Gi0/2 \implies Fa0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
Router# traceroute mac 0001.0000.0204 0001.0000.0304 detail
Source 0001.0000.0204 found on VAYU[WS-C6509] (2.1.1.10)
1 VAYU / WS-C6509 / 2.1.1.10 :
                Gi6/1 [full, 1000M] => Po100 [auto, auto]
2 PANI / WS-C6509 / 2.1.1.12 :
                Po100 [auto, auto] => Po110 [auto, auto]
3 BUMI / WS-C6509 / 2.1.1.13 :
                Poll0 [auto, auto] => Pol20 [auto, auto]
4 AGNI / WS-C6509 / 2.1.1.11 :
                Po120 [auto, auto] => Gi8/12 [full, 1000M] Destination
0001.0000.0304
found on AGNI[WS-C6509] (2.1.1.11) Layer 2 trace completed.
```

Troubleshooting Spanning Tree

Spanning Tree Operation (1)

- 1) Elect a Root Bridge/Switch.
- 2) Select a Root Port on each Bridge/Switch (except on the Root bridge/switch).
- 3) Elect a Designated device/port on each network segment.
- Ports that are neither Root Port nor a Designated Port go into Blocking state.

Spanning Tree Operation (2)

1) Elect a Root Bridge/Switch.

Spanning Tree Operation ③

2) Select a Root Port on each bridge/switch.

Spanning Tree Operation (4)

3) Elect a Designated device/port on each network segment.

Spanning Tree Operation (5)

4) Place ports in Blocking state.

The show spanning-tree vlan Command

The show spanning-tree interface Command

Spanning Tree Failures

- STP is a reliable but not an absolutely failproof protocol.
- IF STP fails
 - THEN there are usually major negative consequences.
- There are two different types of failures.
 - 1) STP may erroneously block certain ports that should have gone to the forwarding state
 - You may lose connectivity to certain parts of the network, but the rest of the network is unaffected.
 - 2) STP erroneously moves one or more ports to the Forwarding state.
 - The failure is more disruptive as bridging loops and broadcast storms can occur.

Spanning Tree Failures – Cont.

- Bridging loops can cause these symptoms...
 - The load on all links in the switched LAN will quickly start increasing.
 - Layer 3 switches and routers report control plane failures such as continual HSRP, OSPF and EIGRP state changes or that they are running at a very high CPU utilization load.
 - Switches will experience very frequent MAC address table changes.
 - With high link loads and CPU utilization devices typically become unreachable, making it difficult to diagnose the problem while it is in progress.
- Eliminate topological loops and troubleshoot issues.
 - Physically disconnect links or shut down interfaces.
 - Diagnose potential problems.
 - A unidirectional link can cause STP problems. You may be able to identify and remove a faulty cable to correct the problem.

The show spanning-tree Command

ASW1# show s	panning-tree	vlan 17			
MST0					
Spanning tree enabled protocol mstp					
Root ID	Priority	32768			
	Address	001e.79a9.b580)		
	This bridge	is the root			
	Hello Time	2 sec Max Ag	ge 20 sec	Forward Delay 15 sec	
Bridge ID	Priority	32768 (priori	Lty 32768	sys-id-ext 0)	
	Address	001e.79a9.b580)		
	Hello Time	2 sec Max Ag	ge 20 sec	Forward Delay 15 sec	
Interface	Role	Sts Cost	Prio.Nbr	Туре	
Fa0/7	Desg	FWD 200000	128.9	P2p Edge	
Pol	Desg	BLK 100000	128.56	P2p	
Po2	Desg	BKN*100000	128.64	P2p Bound(PVST) *PVST_Inc	
Pol Po2	Desg Desg	BLK 100000 BKN*100000	128.56 128.64	P2p P2p Bound(PVST) *PVST_Inc	

Common STP Problems

- Unidirectional or split links
 - Usually on optical medium
- Wrong ACL that blocks BPDU messages
- Duplex mismatch
 - Leads to collisions and BPDUs discarding
- Too much VLANs
 - Technical limitation of the number of running STP instances (e.g., 128). Exceeding VLANs do not run STP and thus are not protected against loops
- Too much CPU utilization, CPU cannot process BPDUs
- Wrong EtherChannel link configuration
 - One side is "on", other one is not configured at all
- Special problems when mixing MST with PVST+ or RPVST+

Troubleshooting Etherchannel

EtherChannel Operation

- EtherChannel bundles multiple physical Ethernet links (100 Mbps,1 Gbps, 10 Gbps) into a single logical link
- Traffic is distributed across multiple physical links as one logical link
- This logical link is represented in Cisco IOS syntax as a "Port-channel" (Po) interface
- Packets and frames are routed or switched to the port-channel interface
- STP and routing protocols interact with this single port-channel interface
- A hashing mechanism determines which physical link will be used to transmit them

Common EtherChannel Problems

- 1) Inconsistencies between the physical ports that are members of the channel (a %EC-5-CANNOT_BUNDLE2 log message is generated)
- 2) Inconsistencies between the ports on the opposite sides of the EtherChannel link (The switch will generate a %SPANTREE-2-CHNL_MISCFG message)
- 3) Uneven distribution of traffic between EtherChannel bundle members
- The most of the problems could be solved by using EtherChannel management protocols
 - Link Aggregation Control Protocol (LACP), IEEE
 - Port Aggregation Protocol (PAgP), Cisco
 - Avoid "on" mode

The show etherchannel summary Command

```
DSW2# show etherchannel summary
Flags: D - down P - bundled in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use f - failed to allocate aggregator
      M - not in use, minimum links not met
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
Number of channel-groups in use: 2
Number of aggregators:
                            2
Group Port-channel Protocol Ports
_____+
 Pol(SD) - Fa0/5(s) Fa0/6(s)
1
                   - Fa0/3(P) Fa0/4(P)
    Po2 (SU)
2
```

The show etherchannel detail Command

```
DSW2# show etherchannel 1 detail
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol:
Minimum Links: 0
Ports in the group:
Port: Fa0/5
Port state = Up Cnt-bndl Suspend Not-in-Bndl
                  Mode = On
Channel group = 1
                                               Gcchange = -
Port-channel = null GC = -
                                               Pseudo port-channel = Po1
Port index = 0 Load = 0x00
                                               Protocol =
Age of the port in the current state: 0d:00h:25m:13s
Probable reason: vlan mask is different
<output omitted>
```

The show spanning-tree Command

ASW1# show spanning-tree	vlan 17				
MST0					
Spanning tree enabled protocol mstp					
Root ID Priority	32768				
Address	001e.79a9.b580				
This bridge	is the root				
Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec				
Bridge ID Priority Address	32768 (priority 32768 sys-id-ext 0) 001e.79a9.b580				
Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec				
Interface Role	Sts Cost Prio.Nbr Type				
Fa0/7 Desg	FWD 200000 128.9 P2p Edge				
Pol Desg	BLK 100000 128.56 P2p				
Po2 Desg	BKN*100000 128.64 P2p Bound(PVST) *PVST_Inc				

L2 Troubleshooting Flow

L2 Troubleshooting Flow (1)

L2 Troubleshooting Flow (2)

L2 Troubleshooting Flow ③

L2 Troubleshooting Flow (4)

Troubleshooting Switched Virtual Interfaces and Inter-VLAN Routing

Router and MLS Similarities

- Both routers and multilayer switches use routing protocols or static routes to maintain routing information and record this information in a routing table
- Both routers and multilayer switches perform the same functional packet switching actions:
 - They receive a frame and strip off the Layer 2 header
 - They perform a Layer 3 lookup to determine the outbound interface and next hop
 - They encapsulate the packet in a new Layer 2 frame and transmit the frame

Router and MLS Differences

- Routers connect heterogeneous networks and support a wide variety of media and interfaces
- Multilayer switches typically connect homogenous networks. Most LAN switches are Ethernet only.
- Multilayer switches utilize specialized hardware to achieve wire-speed Ethernet-to-Ethernet packet switching
- Low- to mid-range routers use multi-purpose hardware to perform the packet switching process
- On average, the packet switching throughput of routers is lower than the packet switching throughput of multilayer switches
- Routers usually support a wider range of features, mainly because switches need specialized hardware to be able to support certain data plane features or protocols
- On routers, you can often add features through a software update

Switch Performance

Data plane

- Ingress interface
- Forwarding hardware
- Egress interface

Control plane

- CPU
- Memory

Cisco 7206

Catalyst 6504

The show interface counters Command

		6/1 counters	interfaces fas	show	Router#
InBcastPkts	InMcastPkts	InUcastPkts	InOctets		Port
149	673028	23	47856076		Fa6/1
OutBcastPkts	OutMcastPkts	OutUcastPkts	OutOctets		Port
3280	255877	17	22103793		Fa6/1

Duplex mismatch example

DLS1# show interfaces fastEthernet 0/1 include duplex Full-duplex, 100Mb/s, media type is 10/100BaseTX								
DLS1# show	interfaces fa:	stEthernet	0/1 counters	s errors				
Port	Align-Err	FCS-Err	Xmit-Err	Rcv-Err (UnderSize	OutDisca	ards	
Fa0/1	0	12618	0	0	0		0	
Port	Single-Col Mu	lti-Col La	ata-Col Exce	ss-Col Car	ri-Son	Punte	Giante	
	Single-Coi Mu.		ale-COI Exce		LT-Sen	Runcs	Grancs	
Fa0/1	0	Ο	Ω	0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Δ (A)	Δ (Δ	
	Ŭ	U	0	0	0	0	0	
, -	0	U	0	0	0	0	0	
DLS2# show	interfaces fag	stEthernet	0/1 inclu	de duplex	0	0	0	
DLS2# show	interfaces fas	stEthernet	0/1 includ	de duplex	0	0		
DLS2# show Half-dup	interfaces fas lex, 100Mb/s, r	stEthernet media type	0/1 includ is 10/100Bas	de duplex seTX	0	0	0	
DLS2# show Half-dup	interfaces fas lex, 100Mb/s, r	stEthernet media type	0/1 inclue is 10/100Bas	de duplex seTX	0			
DLS2# show Half-dup DLS1# show	interfaces fas lex, 100Mb/s, r interfaces fas	stEthernet media type stEthernet	0/1 inclue is 10/100Bas 0/1 counters	de duplex seTX s errors				
DLS2# show Half-dup DLS1# show Port	interfaces fas lex, 100Mb/s, r interfaces fas Align-Err	stEthernet media type stEthernet FCS-Err	0/1 inclue is 10/100Bas 0/1 counters Xmit-Err	de duplex seTX s errors Rcv-Err [UnderSize	OutDisca	ards	
DLS2# show Half-dup DLS1# show Port Fa0/1	interfaces fas lex, 100Mb/s, r interfaces fas Align-Err	stEthernet nedia type stEthernet FCS-Err	0/1 inclue is 10/100Bas 0/1 counters Xmit-Err	de duplex seTX s errors Rcv-Err T	U UnderSize	OutDisca	ards	
DLS2# show Half-dup DLS1# show Port Fa0/1	interfaces fas lex, 100Mb/s, r interfaces fas Align-Err 0	stEthernet nedia type stEthernet FCS-Err 0	0/1 inclue is 10/100Bas 0/1 counters Xmit-Err 0	de duplex seTX s errors Rcv-Err T 0	U UnderSize 0	OutDisca	ards 0	
DLS2# show Half-dup DLS1# show Port Fa0/1 Port	interfaces fas lex, 100Mb/s, r interfaces fas Align-Err 0 Single-Col Mu	stEthernet nedia type stEthernet FCS-Err 0 Lti-Col La	0/1 inclue is 10/100Bas 0/1 counters Xmit-Err 0 ate-Col Exces	de duplex seTX s errors Rcv-Err T 0 ss-Col Carr	UnderSize 0 ri-Sen	OutDisca	ards 0 Giants	
DLS2# show Half-dup DLS1# show Port Fa0/1 Port Fa0/1	interfaces fas lex, 100Mb/s, r interfaces fas Align-Err 0 Single-Col Mui 0	stEthernet nedia type stEthernet FCS-Err 0 Lti-Col La 0	0/1 includ is 10/100Bas 0/1 counters Xmit-Err 0 ate-Col Exces 12679	de duplex seTX s errors Rcv-Err T 0 ss-Col Carr 0	UnderSize 0 ri-Sen 0	OutDisca Runts 0	ards 0 Giants 0	

Interface Errors ①

Following errors indicate cabling, NIC or duplex issues

Align-Err

 The number of frames with alignment errors, which means that they not end with an even number and have bad CRC

FCS-Err

• The number of valid size frames with FCS error but no framing errors

Xmit-Err and Rcv-Err

- Internal Tx or Rx buffers are full
- Common cause is high utilization of link

Undersize

 The frames that are smaller than the IEEE 802.3 frame size minimum of 64 bytes long

Runts

 The frames that are smaller than the IEEE 802.3 frame size minimum of 64 bytes long AND with bad CRC

Giants

 Frames that exceed the IEEE 802.3 frame size minimum of 1518 bytes long AND with bad CRC

Interface Errors (2)

Following errors indicate duplex issues

Single-Col

- The number of times one collision occurs before port transmits the frame to the medium
- Usual on half-duplex port, should not be seen on full-duplex

Multi-Col

 The number of times multiple collisions occurs before port transmits the frame to the medium and same conditions as previous

Late-Col

- The number of frames that a collision is detected on a particular port late in the trasmission process (for 10Mb/s port later than 51.2 usec)
- For duplex mismatch seen on half-duplex side

Excess-Col

- This is a count of frames trasmitted on a particular port, which fail due to the excessive collisions (16 times in a row)
- Typically indicates that a load needs to be split across multple segments

Carri-Sen

This occurs every time port wants to send data on half-duplex connection

Duplex and Audo-MDIX Mismatches

- A common cause for performance problems in Ethernet-based networks is duplex mismatch
- Duplex guidelines
 - Point-to-Point links should be always full-duplex
 - Half-duplex is not common anymore and is mostly encountered in topologies with hub devices
 - Autonegotiation of speed and duplex is recommended, otherwise setup both ends of the link manually
 - Half-duplex on both ends performs better than duplex mismatch
- The Automatic Media-Dependent Interface Crossover (Auto-MDIX) feature detects required connection type
 - Enabled by default on switches
 - Auto-MDIX is dependent on auto-negotiation for speed and duplex
 - IF speed and duplex negotiation are turned off THEN Auto-MDIX is turned off as well

Configuration and Verifying Auto-MDIX

Setting up Auto-MDIX

```
CSW1(config)#interface FastEthernet 0/10
CSW1(config-if)#mdix auto
CSW1(config-if)#speed auto
CSW1(config-if)#duplex auto
```

Verifying

```
swl# show interfaces transceiver properties
Name : Fa0/1
Administrative Speed: auto
Administrative Duplex: auto
Administrative Auto-MDIX: on
Administrative Power Inline: N/A
Operational Speed: auto
Operational Duplex: auto
Operational Auto-MDIX: on
```

Multi-layer Switch Interfaces

Three MLS Core Functions (1)

- 1) Layer 2 switching within each VLAN:
 - The traffic switched between ports that belong to the same VLAN
 - The MAC address tables for different VLANS are logically separated.
 - No IP or Layer 3 configuration is necessary.
- 2) Routing and multilayer switching between the local VLANs:
 - Layer 3 switching between VLANs requires SVIs
 - Each SVI requires an appropriate IP address and subnet mask.
 - Hosts on the can use the SVI's IP address as default gateway.
 - IP routing must be enabled.

Three MLS Core Functions (2)

- 3) Routing and multilayer switching between the local VLANs and one or more routed interfaces:
 - A regular physical switched port can be made a routed port.
 - A routed interface does not belong to any user-created or default VLAN and has no dependency on VLAN status (unlike an SVI).
 - Traffic on this port is not bridged (switched) to any other port
 - There is no MAC address table associated to it.
 - The port acts like a regular router interface and needs its own IP address and subnet mask.

SVI vs. Routed Interfaces

- A routed interface is not a L2 port L2 protocols, such STP and DTP are not active.
- The status of a routed interface is directly related to the availability of the corresponding directly-connected subnet.
- IF a routed interface goes down THEN the corresponding connected route will immediately be removed from the routing table.
- An SVI is not a physical interface so it generally doesn't fail.
- An SVIs status is directly dependent on the status of the VLAN with which it is associated. The VLAN must be defined in the VLAN database.
- An SVI stays up as long as there is at least one port associated to the corresponding VLAN. That port has to be up and in the Spanning Tree forwarding state.
- An SVI can only go down when the last active port in the VLAN goes down or loses its Spanning Tree forwarding status (and the corresponding connected subnet will be removed from the routing table).

Verifying the status of a VLAN and SVI

ASW1# show ip interfaces brief exclude unassigned							
Interface	IP-Address	OK? Method Status	Protocol				
Vlan128	10.1.156.1	YES NVRAM up	down				
ASWI# snow spanning	ASW1# show spanning-tree vlan 128						
Spanning tree instance(s) for vlan 128 does not exist.							
ASW1# show ylan id 128							
VLAN id 128 not fou	nd in current VL	AN database					
ASW1# <mark>show vlan id</mark> VLAN id 128 not fou	128 nd in current VL	AN database					

Forwarding Hardware

- Forwarding hardware consists of:
 - Decision-making logic
 - L2/L3 switching actions
 - ACL processing
 - QoS processing
 - A backplane to carry data between interfaces

Ternary Content Addressable Memory

- Control plane information that affects packet forwarding is programmed into Ternary Content Addressable Memory (TCAM)
- Packets that cannot be handled by TCAM will be punted to the CPU

Useful CEF Commands

show ip cef

- Displays the content of the CEF FIB.
- The FIB reflects the content of the routing table with all the recursive lookups resolved already and the output interface determined for each destination prefix.
- The FIB also holds additional entries for directly connected hosts, the router's own IP addresses, and multicast and broadcast addresses.

show adjacency

- Displays the content of the CEF adjacency table.
- This table contains preconstructed Layer 2 frame headers with all necessary fields already filled in. These frame headers are used to encapsulate the egress CEF-switched packets and deliver them to appropriate next hop devices..

Useful Multi-layer Switches Commands

Commands to check forwarding behavior of switches from the content of TCAM on Catalyst switches:

show platform

 On the Catalyst 3560, 3750 and 4500 platforms, the show platform family of commands can be used to obtain detailed information about the forwarding behavior of the hardware.

show mls cef

 On the Catalyst 6500 platform, the show mls cef family of commands can be used to obtain detailed information about the forwarding behavior of the hardware.

The show platform tcam util Command

Switch# show platform tcam utilization		
CAM Utilization for ASIC# 0	Max Masks/Values	Used Masks/values
Unicast mac addresses:	784/6272	12/26
IPv4 IGMP groups + multicast routes:	144/1152	6/26
IPv4 unicast directly-connected routes:	784/6272	12/26
IPv4 unicast indirectly-connected routes:	272/2176	8/44
IPv4 policy based routing aces:	0/0	0/0
IPv4 qos aces:	528/528	18/18
IPv4 security aces:	1024/1024	27/27

Note: Allocation of TCAM entries per feature uses a complex algorithm. The above information is meant to provide an abstract view of the current TCAM utilization

Traffic Forwarding to the CPU

- Traffic being punted to the CPU is indirect proof of TCAM allocation failures or use of unsupported features
- The show controllers cpu-interface displays the statistics for packets that are forwarded by CPU

Switch# ASIC	show cont Rxbiterr	rollers cpu Rxunder	-interface Fwdctfix	Txbuflos	Rxbufloc	Rxbufdrain
ASIC0	0	0	0	0	0	0
cpu-queu	1e-frames	retrieved	dropped	invalid	hol-block	stray
rpc		0	0	0	0	0
stp		1	0	0	0	0
ipc		0	0	0	0	0
routing	protocol	28312	0	0	0	0
L2 proto	ocol	0	0	0	0	0
remote o	console	0	0	0	0	0
sw forwa	arding	13800556	0	0	0	0
host		7648	0	0	0	0
broadcas	st	462103	0	0	0	0
cbt-to-s	spt	0	0	0	0	0
igmp sno	ooping	35916	0	0	0	0
icmp		0	0	0	0	0
logging		0	0	0	0	0
rpf-fail	L	0	0	0	0	0
dstats		0	0	0	0	0
cpu hear	rtbeat	22302361	0	0	0	0

CPU Problems

- First, determine whether interrupts or processes are the major cause of the increased CPU load
 - IF case of interrupts THEN troubleshoot packet forwarding and TCAM
 - IF case of processes THEN isolate responsible process and troubleshoot based on outcome
- In general, an average CPU load if 50% is not problematic just same as temporary 100% bursts
- Spikes in load could be caused by
 - Processor-intensive commands such as show tech-support, debug, show running, copy run start
 - Routing protocol updates
 - SNMP Polling

Isolating Process

- Important processes are
 - IP Input
 - IP ARP
 - SNMP Engine
 - IGMPSN

Multilayer Switching Troubleshooting Flow

Multilayer Switching Troubleshooting Flow (1)

Multilayer Switching Troubleshooting Flow (2)

Multilayer Switching Troubleshooting Flow (3)

Multilayer Switching Troubleshooting Flow (4)

Troubleshooting First Hop Redundancy Protocols

First Hop Redundancy Protocols (FHRPs)

- FHRP is an important element in building highly available networks.
- Clients and servers normally point to a single default gateway and lose connectivity to other subnets if their gateway fails
- FHRPs provide redundant default gateway functionality that is transparent to the end hosts
- These protocols provide a virtual IP address and the corresponding virtual MAC address.
- Examples of FHRPs include:
 - Hot Standby Router Protocol (HSRP) Cisco
 - Virtual Router Redundancy Protocol (VRRP) IETF standard
 - Gateway Load Balancing Protocol (GLBP) Cisco
- The mechanisms of these protocols revolve around these functions:
 - Electing a single router that controls the virtual IP address
 - Tracking availability of the active router
 - Determining if control of the virtual IP and MAC addresses should be handed over to another router

The show standby brief Command

The show standby interface-id Command

Shutting Down FHRP Interface

The interface of a router participating in HSRP is shutdown

The debug standby terse Command (2)

R2# *Mar 1 00:16:23.555: HSRP: Fa0/0 Grp 1 Coup in 10.1.1.1 Listen pri 110 vIP 10.1.1.254 *Mar 1 00:16:23.555: HSRP: Fa0/0 Grp 1 Active: j/Coup rcvd from higher pri router (110/10.1.1.1) *Mar 1 00:16:23.555: HSRP: Fa0/0 Grp 1 Active router is 10.1.1.1, was local 1 00:16:23.555: HSRP: Fa0/0 Grp 1 Active -> Speak *Mar *Mar 1 00:16:23.555: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Speak *Mar 1 00:16:23.555: HSRP: Fa0/0 Grp 1 Redundancy "hsrp-Fa0/0-1" state Active -> Speak *Mar 1 00:16:33.555: HSRP: Fa0/0 Grp 1 Speak: d/Standby timer expired (unknown) *Mar 1 00:16:33.555: HSRP: Fa0/0 Grp 1 Standby router is local *Mar 1 00:16:33.555: HSRP: Fa0/0 Grp 1 Speak -> Standby *Mar 1 00:16:33.555: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Speak -> Standby *Mar 1 00:16:33.559: HSRP: Fa0/0 Grp 1 Redundancy "hsrp-Fa0/0-1" state Speak -> Standby R2#

Operational Differences Between FHRPs

Feature	HSRP	VRRP	GLBP
Transparent default gateway redundancy	Yes	Yes	Yes
Virtual IP address can also be a real address	No	Yes	No
IETF standard	No	Yes	No
Preempt is enabled by default	No	Yes	No
Multiple forwarding routers per group	No	No	Yes
Default Hello timer (seconds)	3	1	3

HSRP, VRRP, and GLBP Diagnostic Commands

Output of basic **show** commands for HSRP, VRRP, and GLBP

R1# show standby brief							
			Ρ	indicates	s configured to	preempt.	
			Ι				
Interface	Grp	Prio	Ρ	State	Active	Standby	Virtual IP
Fa0/0	1	110	Ρ	Active	local	10.1.1.2	10.1.1.254
	_						
R1# show vr	rp bi	rief					
Interface		Gı	cp	Pri Time	Own Pre State	Master addr	Group addr
Fa0/0		1		110 3570	Y Master	10.1.1.1	10.1.1.254
R1# show gl	pb p1	rief					
Interface	Grp	Fwd	Pr	i State	Address	Active router	Standby
router							
Fa0/0	1	-	11	0 Active	10.1.1.254	local	10.1.1.2
Fa0/0	1	1	-	Active	0007.b400.010	1 local	-
Fa0/0	1	2	-	Listen	0007.b400.010	2 10.1.1.2	-

Diagnostic Commands Comparison

HSRP	VRRP	GLBP
show standby brief	show vrrp brief	show glbp brief
show standby interface-id	<pre>show vrrp interface interface-id</pre>	show glbp interface-id
debug standby terse	No real equivalent option exits. Multiple debug options must be used simultaneously.	debug glbp terse

Slides adapted by Vladimír Veselý and Matěj Grégr

partially from official course materials but the most of the credit goes to CCIE#23527 Ing. Peter Palúch, Ph.D.

The last update: 2015-10-14